• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Progress in electronic structure and topology in nickelates superconductors

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

The discovery of high Tc superconductivity in cuprates attracts people to explore superconductivity in nickelates, whose crystal structures are similar to cuprates. Recently, Danfeng Li et al. at Stanford University published an article on Nature, reporting the observed superconductivity in hole-doped nickelates Nd0.8Sr0.2NiO2. Different from cuprates, the parent compound NdNiO2 do not preserve long range magnetic order, which was thought to be responsible for superconductivity in copper oxides. Besides, the ground state of NdNiO2 is metallic. The comment article on Nature said that Li’s work could become a game changer for our understanding of superconductivity in cuprates and cuprate-like systems, perhaps leading to new high-temperature superconductors.”

In order to understand the mechanism of nickelates superconductor, scientists at Institute of Physics, Chinese Academy of Science made a carefully analysis on the parent compound NdNiO2, including its electronic band structure, orbital characteristics, Fermi surfaces and band topology by using the first-principles calculations and Gutzwiller variational method. The results show that the electron Fermi pockets are contributed by Ni-3dx2-y2 orbitals, while hole pockets consist of Nd-5d3z2-r2 and Nd-5dxy orbitals (shown in Fig.1). By analyzing elementary band representation in the theory of topological quantum chemistry, authors found that a two-band model can be constructed to reproduce all bands around Fermi level. The two bands originate from two orbitals, including one Ni-3dx2-y2 orbital and one s-like pseudo-orbital located on the vacancy of oxygen atoms. Besides, the authors found that band inversion happens between Ni-3dxy states and conduction bands, resulting a pair of Dirac points along M-A in the Brillouin zone.
In addition, to take the correlation effects of Ni 3d electrons into consideration, the authors performed the DFT + Gutzwiller calculation. The renormalized band structure is given in Fig.2. The results show that the half occupied 3dx2-y2 orbital have the smallest quasiparticle weight (about 0.12); namely, the 3dx2-y2 band width after renormalization is about 1/8 of DFT results. On the other hand, the Dirac points along M-A high symmetry line become closer to the Fermi level due to the band renormalization. In this work authors calculated the electronic structure, discussed topological properties and constructed a two-band model. These results will help people for the study of topology and superconductivity in nickelates.

###

This research received funding from the National Natural Science Foundation of China, Beijing Natural Science Foundation, the Ministry of Science and Technology of China, the Strategic Priority Research Program of Chinese Academy of Sciences and the Beijing Municipal Science and Technology Commission.

See the article:

Jiacheng Gao, Shiyu Peng, Zhijun Wang, Chen Fang, Hongming Weng
Electronic structures and topological properties in nickelates Lnn+1NinO2n+2
Nat.Sci.Rev.
https://doi.org/10.1093/nsr/nwaa218

Media Contact
Zhijun Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa218

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

Landmark study generates first genomic atlas for global wheat improvement

IMAGE

Wheat diversity due to cross-hybridization with wild grasses

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In