• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Producing technicolor through brain-like electronic devices

Bioengineer by Bioengineer
September 8, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Junsuk Rho (POSTECH)

Structural coloration is promised to be the display technology of the future as there is no fading – it does not use dyes – and enables low-power displays without strong external light source. However, the disadvantage of this technique is that once a device is made, it is impossible to change its properties so the reproducible colors remain fixed. Recently, a POSTECH research team has successfully obtained vivid colors by using semiconductor chips – not dyes – made by mimicking the human brain structure.

POSTECH’s joint research team consisting of Professor Junsuk Rho of the mechanical engineering and chemical engineering departments, Inki Kim, a mechanical engineering student in the MS/PhD integrated program, along with Professor Yoonyoung Jung and masters student Juyoung Yun of the Department of Electrical Engineering developed a technology that can freely change the structural colors using IGZO(Indium-Galium-Zinc-Oxide), a type of oxide semiconductor. IGZO is a material that is widely used not only in flexible displays but also in neuromorphic electronic devices. This is the first study that incorporates IGZO to nanoptics.

IGZO can freely control the charge concentration within a layer through the hydrogen plasma treatment process, thereby controlling the refractive index in all ranges of visible light. In addition, nanoptical simulations and experiments have confirmed that the extinction coefficient of visible light is close to zero, thus enabling the actualization of a transmittable color filter in the penetrable form that can transmit exceptionally clear colors with extremely low light loss.

The IGZO-based color filter technology developed by the research team consists of a 4-layer (Ag-IGZO-SiO2-Ag) multilayer and can transmit vivid colors using the Fabry-Perot resonance3 properties. Experiments have confirmed that as the charge concentration of IGZO layer increases, the refractive index decreases which can change the resonance properties of light that is selectively transmitted.

This design method can be applied not only to color filters for large-scale displays, but also to color printing technique of micro (11-6, millionth) or nano (10-9, billionth) sizes.

To verify this, the research team demonstrated a color printing technology that has a pixel size of one micrometer (μm, one millionth of a meter).

The results proved that the colors from the centimeter or micrometer-sized color pixels can be adjusted freely depending on the charge concentration of the IGZO layer. It was also confirmed that the structural color can be changed more reliably and quickly through changing the refractive index via charge concentration compared to other conventional all solid-state variable materials like WO3 or GdOx.

“This research is the very first application of IGZO to nanoptical structural color display technology. IGZO is the next-generation oxide semiconductor used in flexible displays and neuromorphic electronic devices,” stated Professor Rho who led the research. He added, “It is anticipated that this technology, which enables filtering the transmitted light by adjusting the charge concentration, can be applied to the next-generation low-power reflective display and anti-tamper display technologies.”

###

This study was conducted with the support from the Samsung Research Funding & Incubation Center for Future Technology.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://www.postech.ac.kr/eng/producing-technicolor-through-brain-like-electronic-devices/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1364/PRJ.395749

Tags: Computer ScienceElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMechanical EngineeringNanotechnology/MicromachinesSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

October 9, 2025
Core Diversification with 1,2-Oxaborines: Versatile Platform

Core Diversification with 1,2-Oxaborines: Versatile Platform

October 9, 2025

Revealing Breakthrough Discoveries in Metals Manufacturing Physics

October 9, 2025

Transforming Bioplastics: Microbial Innovation Enables Fully Bio-Based Long-Chain Polyesters

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1185 shares
    Share 473 Tweet 296
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

High-Voltage Electrocution: SEM-EDS Reveals Wound Insights

Linking COPD, Cardiovascular Admissions to Referral Compliance

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.