• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 2, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Producing more sustainable hydrogen with composite polymer dots

Bioengineer by Bioengineer
February 12, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: P-Cat

Hydrogen for energy use can be extracted in an environmentally friendly way from water and sunlight, using photocatalytic composite polymer nanoparticles developed by researchers at Uppsala University. In laboratory tests, these “polymer dots” showed promising performance and stability alike. The study has been published in the Journal of the American Chemical Society.

How we are to meet future demand for sustainable energy is a much-debated question. One feasible way to go is hydrogen, which can be produced from renewable resources: water and solar energy. But the process requires what are known as photocatalysts. Traditionally, these have been made of metal-based materials that are often toxic. Instead, a research group headed by Haining Tian at Uppsala University’s Ångström Laboratory is working to develop nano-sized organic photocatalysts – “polymer dots” – designed to be both environmentally friendly and cost-effective.

Since polymer dots (Pdots) are so tiny, they are evenly distributed in water. Compared with traditional photocatalysts, this provides a larger reaction surface, which means that more light can be stored in the form of hydrogen gas. The research group has now developed a Pdot containing three components. In tests, the particle has shown very good catalytic performance and stability.

“Combining several components that absorb light at different wavelengths is the easiest way to create a system in which all the visible surfaces capture light. But getting these components to work well together in a photocatalytic system is challenging,” says Haining Tian, Associate Professor (Docent) of Physical Chemistry at Uppsala University.

To investigate how well the various components work together, Tian and his colleagues used spectroscopic techniques in which the Pdot was exposed to light for a certain length of time. They were thus able to follow how photochemical intermediates were created and, under illumination, disappeared.

“It’s exciting to see that both ultrafast energy transfer and electron transfer take place in one particle, and that this helps the system to make use of the light and separate the charge for the catalytic process,” says the study’s lead author Aijie Liu, a postdoctoral researcher at the Department of Chemistry – Ångström Laboratory.

The researchers have succeeded in optimising the system of triple-component polymer dots so that it catalyses the conversion of solar energy into hydrogen with a 7% efficiency rate at 600 nanometres (nm). This is significantly better than the 0.3% at 600 nm obtained by the group when they were working on Pdots consisting of only one component. One problem has previously been that the photocatalysts degrade prematurely, but now the researchers were unable to discern any distinct degradation even after 120 hours’ testing.

###

Aijie Liu et al. (2020), Panchromatic Ternary Polymer Dots Involving Sub-Picosecond Energy and Charge Transfer for Efficient and Stable Photocatalytic Hydrogen Evolution, Journal of the American Chemical Society. DOI: 10.1021/jacs.0c12654

Media Contact
Haining Tian
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c12654

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Nanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Indoors, outdoors, 6 feet apart? Transmission risk of airborne viruses can be quantified

March 2, 2021
IMAGE

Oregon researchers unveil the weaving fractal network of connecting neurons

March 2, 2021

NRL physicist earns 2020 AAAS Newcomb Cleveland Prize

March 2, 2021

Dethroning electrocatalysts for hydrogen production with inexpensive alternative material

March 2, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    656 shares
    Share 262 Tweet 164
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyCell BiologyInfectious/Emerging DiseasesMaterialsPublic HealthMedicine/HealthChemistry/Physics/Materials SciencesClimate ChangeGeneticsTechnology/Engineering/Computer SciencecancerEcology/Environment

Recent Posts

  • Novel drug prevents amyloid plaques, a hallmark of Alzheimer’s disease
  • Indoors, outdoors, 6 feet apart? Transmission risk of airborne viruses can be quantified
  • Oregon researchers unveil the weaving fractal network of connecting neurons
  • A Skoltech robot analyzes shoppers’ behavior
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In