• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Printing flexible wearable electronics for smart device applications

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using conventional printing techniques to print flexible supercapacitors is economical, scalable

WASHINGTON, June 10, 2021 — The demand for flexible wearable electronics has spiked with the dramatic growth of smart devices that can exchange data with other devices over the internet with embedded sensors, software, and other technologies. Researchers consequently have focused on exploring flexible energy storage devices, such as flexible supercapacitators (FSCs), that are lightweight and safe and easily integrate with other devices. FSCs have high power density and fast charge and discharge rates.

Printing electronics, manufacturing electronics devices and systems by using conventional printing techniques, has proved to be an economical, simple, and scalable strategy for fabricating FSCs. Traditional micromanufacturing techniques can be expensive and complex.

In Applied Physics Reviews, by AIP Publishing, researchers from Wuhan University and Hunan University provide a review of printed FSCs in terms of their ability to formulate functional inks, design printable electrodes, and integrate functions with other electronic devices.

Printed FSCs are generally manufactured by printing the functional inks on traditional organic and inorganic electrode materials on flexible substrates. Due to the thin film structure, these printed devices can be bent, stretched, and twisted to a certain radius without loss of electrochemical function.

In addition, the rigid current collector components of the supercapacitor can also be replaced by the flexible printed parts. Various printing techniques such as screen printing, inkjet printing, and 3D printing have been well established to fabricate the printed FSCs.

“The development of miniaturized, flexible, and planar high-performance electrochemical energy storage devices is an urgent requirement to promote the rapid development of portable electronic devices in daily life,” said author Wu Wei. “We can imagine that in the future, we can use any printer in our lives and can print a supercapacitator to charge a mobile phone or smart wristband at any time.”

The researchers found for printable ink formulations, two principles should be followed. First, when selecting ink components, it is vital to include fewer ineffective additives, better conductive binders, and excellent dispersion electrode materials. Second, the ink must have a suitable viscosity and a good rheology property to obtain excellent prints.

Printable functional materials, such as graphene and pseudocapacitive materials, are good core components of printed supercapacitators.

Since printed electronics offer the advantage of flexibility and low cost, they can be used to manufacture solar cells, flexible OLED displays, transistors, RFID tags, and other integrated smart devices. This opens up the possibility of many other applications, including smart textiles, intelligent packaging, and smart labels.

###

The article “Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications” is authored by Jing Liang, Changzhong Jiang, and Wei Wu. The article appears in Applied Physics Reviews (DOI: 10.1063/5.0048446) and can be accessed at https://aip.scitation.org/doi/10.1063/5.0048446.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0048446

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Visual Experience’s Impact on Haptic Spatial Perception

October 20, 2025

Exploring Co-Occurring Autism and BPD in Inpatients

October 20, 2025

Nursing Students’ Metaphors: Envisioning AI’s Future Impact

October 20, 2025

ALS Modulator Signature Revealed in Blood Cells

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    297 shares
    Share 119 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Visual Experience’s Impact on Haptic Spatial Perception

Exploring Co-Occurring Autism and BPD in Inpatients

Nursing Students’ Metaphors: Envisioning AI’s Future Impact

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.