• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Princeton scientist solves air quality puzzle: Why does ozone linger long after its ban?

Bioengineer by Bioengineer
April 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Drought-stressed plants are less able to remove ozone from the air, despite laws limiting pollution from cars, trucks and factories, report an international team led by Princeton atmospheric scientist Meiyun Lin

IMAGE

Credit: Zhiguo Zhang

When high in the atmosphere, ozone protects Earth from harmful solar radiation — but ozone at ground level is a significant pollutant. Exposure to high concentrations of ground-level ozone aggravates respiratory illnesses, thus exacerbating the negative health effects of heat and contributing to the catastrophic impacts of recent heatwaves and drought in Europe.

In Europe, despite laws limiting pollution from cars, trucks and factories, there has been little improvement in ozone air quality. An international team led by atmospheric scientist Meiyun Lin found the surprising chain of causes: As global climate change leads to more hot and dry weather, the resulting droughts are stressing plants, making them less able to remove ozone from the air.

With hot and dry summers expected to become more frequent over the coming decades, this has significant implications for European policymakers, noted Lin, a research scholar in atmospheric and oceanic sciences and the Cooperative Institute for Modeling the Earth System at Princeton University.

In a new study published today in Nature Climate Change, Lin and her colleagues demonstrated that vegetation feedbacks during drought worsen the most severe ozone pollution episodes.

“We show that declining ozone removal by water-stressed vegetation in response to climate warming can explain the slow progress towards improving ozone air quality in Europe,” she said. “Under drought stress, plants are less effective in ozone removal via stomata — small pores in the leaves of vegetation that are responsible for controlling carbon dioxide transport for photosynthesis and water vapor losses.”

Such land-biosphere feedbacks have often been overlooked in prior air quality projections. This study quantified these vegetation feedbacks using six decades of observations and new Earth system model simulations developed at the Geophysical Fluid Dynamics Laboratory, a division of the U.S. National Oceanic and Atmospheric Administration located on Princeton’s Forrestal campus.

Lin and her colleagues found that severe drought stress can cause as much as 70% reductions in ozone removal by forests. “Accounting for reduced ozone removal by drought-stressed vegetation leads to a three-fold increase in high-ozone events — above 80 parts per billion,” Lin said. That is significantly worse than the European Union’s ozone target: 60 parts per billion, not to be exceeded on more than 25 days per year. For reference, the U.S. standard is 70 parts per billion, not to be exceeded on more than 4 days per year.

The European Union has established an extensive body of legislation to reduce regional emissions of smog-forming chemicals from member states, but despite 45% to 70% reductions in smog-forming chemicals across a 40-year period, summertime ozone levels measured in Europe actually climbed, especially during the 1980s and ’90s.

Based on their findings, Lin said, governments will need even stronger emission controls to lower ozone air pollution.

While this study focused on Europe, their findings have broad implications. Substantial reductions in ozone removal by vegetation were also observed during North America’s historic heat wave and drought in summer 2012, according to an earlier study by Lin.

Over the coming decades, as the climate warms, it will be increasingly important to account for vegetation feedbacks to determine the effects of extreme pollution events, she said.

###

Lin conducted the research with Yuanyu Xie, a postdoctoral research associate in atmospheric and oceanic sciences and the Cooperative Institute for Modeling the Earth System at Princeton University; Larry Horowitz, Fabien Paulot, Sergey Malyshev and Elena Shevliakova at the Geophysical Fluid Dynamics Laboratory; Angelo Finco and Giacomo Gerosa of Catholic University of the Sacred Heart in Italy; Dagmar Kubistin of Hohenpeissenberg Meteorological Observatory in Germany; and Kim Pilegaard of Technical University of Denmark.

“Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe,” by Meiyun Lin, Larry W. Horowitz, Yuanyu Xie, Fabien Paulot, Sergey Malyshev, Elena Shevliakova, Angelo Finco, Giacomo Gerosa, Dagmar Kubistin and Kim Pilegaard, appears in the April 20, 2020 issue of Nature Climate Change (DOI: 10.1038/s41558-020-0743-y). The research was supported by NOAA (NA14OAR4320106 and NA18OAR4320123) and the U.S. Department of Commerce.

Media Contact
Liz Fuller-Wright
[email protected]

Original Source

https://www.princeton.edu/news/2020/04/20/princeton-scientist-solves-air-quality-puzzle-why-ozone-pollution-persisting-europe

Related Journal Article

http://dx.doi.org/10.1038/s41558-020-0743-y

Tags: Atmospheric ScienceClimate ChangeClimate SciencePlant SciencesPollution/RemediationTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early-Onset Gastric Cancer Trends in BRICS

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.