• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Preventing lead spread

Bioengineer by Bioengineer
March 16, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy: Biswas Lab

While lead pipes were banned decades ago, they still supply millions of American households daily with drinking water amid risks of corrosion and leaching that can cause developmental and neurological effects in young children.

One common abatement: Dig up old lead lines and replace a portion of them with another metal, such as copper. However, this technique can dislodge lead particulates and release them into the water supply. Furthermore, partially replacing the lead pipe connection instead of entirely exchanging it is problematic.

A team of engineers at Washington University in St. Louis has developed a new way to model and track where lead particles might be transported during the partial-replacement process, in an effort to keep the water supply safer.

"We all know lead is not safe, it needs to go," said Assistant Vice Chancellor of International Programs Pratim Biswas, the Lucy and Stanley Lopata Professor and the chair of Energy, Environmental and Chemical Engineering at the School of Engineering & Applied Science. "This is the first comprehensive model that works as a tool to help drinking-water utility companies and others to predict the outcome of an action. If they have the necessary information of a potential action, they can run this model and it can advise them on how best to proceed with a pipe replacement to ensure there are no adverse effects."

In the research, recently accepted by the journal Environmental Science & Technology, Biswas and graduate research assistant Ahmed A. Abokifa present their approach, which predicts how far lead particles and dissolved species might travel after they've been disturbed. Utilizing water-quality modeling they had previously developed for the Environmental Protection Agency, Biswas and his team built a new computational model to predict lead particulate release, taking into account factors such as pipe age and dimensions, water-use patterns, water chemistry and previous pipe disturbances.

After running a number of simulations testing their predictions, Biswas and his team are ready to make their model widely available to utility companies and even consumers. Biswas said the companies can input their individual system's information and receive recommendations so partial-pipe replacement can proceed without compromising water quality. Abokifa and Biswas have developed several other drinking-water distribution system models to accurately predict disinfectant concentrations in the pipe network, especially dead-end systems.

"We'll work to make these accurate models readily available, so utilities can download and use them," he added. "The predictions of the model will guide them on best practices to ensure the safety of the public at large."

###

Biswas may be reached for interviews at [email protected].

Media Contact

Erika Ebsworth-Goold
[email protected]
314-935-2914
@WUSTLnews

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Tetanus Awareness Among Northern Morocco’s Healthcare Workers

October 18, 2025
blank

Innovations in Non-Animal Scaffolds for Cultured Meat

October 18, 2025

ESMO 2025: Dual Targeted Therapy Demonstrates Potential in Treating Advanced Kidney Cancer After Prior Therapies

October 18, 2025

Revolutionary Bi-Doped Fiber Laser Emits at 1.7 μm

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1259 shares
    Share 503 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    268 shares
    Share 107 Tweet 67
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    111 shares
    Share 44 Tweet 28
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tetanus Awareness Among Northern Morocco’s Healthcare Workers

Innovations in Non-Animal Scaffolds for Cultured Meat

ESMO 2025: Dual Targeted Therapy Demonstrates Potential in Treating Advanced Kidney Cancer After Prior Therapies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.