• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Preventing COVID-19 and aging: geroprotector to enhance resilience and vaccine response

Bioengineer by Bioengineer
February 10, 2021
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Clinical trial to explore the potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19 in biologically aged individuals.

IMAGE

Credit: Deep Longevity Limited

10th of February, Wednesday, Hong Kong – Deep Longevity, a fully-owned subsidiary of Regent Pacific (SEHK:0575.HK), specializing in the development and the application of next-generation artificial intelligence (AI) for aging and longevity research, today announced the publication of an article in Lancet Healthy Longevity titled “The potential of rapalogs to enhance resilience against SARS-CoV-2 infection and reduce the severity of COVID-19”.

While the pandemic continues to unfold, targeted therapeutic solutions for COVID-19 are still not established. The extremely rapid development of various vaccines as a preventative approach provides reassurance, but at the same time faces a number of major challenges: insufficient protection against mutated variants, production line limitations, anti-vaccination skeptics etc. At the same time, COVID-19 still disproportionately affects older and comorbid individuals, who mostly suffer from more severe courses of illness, complications and lethal outcomes. Most frequently, advanced age goes hand in hand with comorbidities, which potentiates the adverse effect of the virus drastically.

Vaccines are still far from arriving at a complete protection. Unfortunately, the population least likely to benefit from such solutions are also those at the highest risk: the elderly and individuals with pre-existing age-related conditions. “It is a double-edged sword: the immune system of elderly and multimorbid (any age) patients is compromised. Those individuals are thus more prone to get infected and to develop a more severe disease. On the other hand, their response to a vaccine – which acts on and with the immune system – might be insufficient. We also see reinfections occurring in elderly patients, which then take an even more aggressive course, leading to fatalities.” said associate prof. Evelyne Bischof, Harvard, Columbia and Basel trained MD, practicing physician, one of the authors of the paper in Lancet Healthy Longevity today – a joint work of the world-renowned biogerontologists and longevity specialists prof. Alex Zhavoronkov, prof.Matt Kaeberlein, and prof. Richard Siow. ‘It is a major problem not only because of the predominantly aged demographics, increased danger in care homes for elderly, but especially because most elderly patients are also comorbid – due to the aging processes causing age-related, mostly chronic diseases.” She continues. Such patients are at a significantly enhanced risk of infection and death if they need to be hospitalized for non-COVID-19 reasons.

While most trials exclusively target the infectious component of the disease, the authors outline the rationale behind a double approach: targeting COVID in the biologically aged for better prevention, vaccination efficacy and improved outcomes. The reasoning is complex and interrelated: old age is related with immunosenescence (immune system aging and thus worse function), with age-related diseases that are related with more severe COVID-19 course, e.g. diabetes, hypertension, cancer etc., with frailty and vulnerability (more exposure, e.g. due to homecare or institutionalization). Therefore, in order to efficiently intervene, geroprotective and senoremediative interventions towards mounting the immune response to vaccines are of uttermost importance, both from the medical, as well as the global economic aspect.

AI-based strategies were harnessed for repurposing known geroprotectors such as rapamycin, for the prevention of SARS-CoV-2 infection. Pre-clinical simulation analysis and previous evidence showing paradoxical immunopotentiation effects of rapamycin urge to propose additional clinical trials for these molecules in the broad elderly population.

In addition, in contrast to current studies, the authors propose to use an objective measurement of the biological rather than the chronological age. In the absence of reliable predictive and prognostic COVID19-biomarkers, minimally-invasive deep aging clocks are suggested as surrogate markers of biological age to track the efficacy of these preventative geroprotective interventions and to stratify the patients by predicted severity of the disease. Moreover, it will allow validation of markers of biological age in the context of viral infections and identification mechanisms by which geroprotectors enhance resilience against infections and reduce the severity of symptoms. This AI based approach in precision medicine was just recently illustrated in Nature Aging

The Lancet Healthy Longevity paper outlined the available evidence and a clinical translation of the geroprotector rapamycin for further research in a clinical trial setting, paving a new perspective: longevity medicine in pandemics. Longevity medicine as AI-based precision medicine aims to assure a healthy lifespan, mitigating and eliminating the risks and development of age-related diseases. Different from the reactive medicine, it uses the latest anticipatory technologies and muti-omics technologies to delay, attenuate or reverse senescence on all levels (cellular, tissue, system, organism, society). The benefits of such an approach in this and future pandemics is obvious, while the publication pioneers the scientific base for a longevity medicine RCT using geroprotective interventions.

###

About Deep Longevity:

Originally incubated by Insilico Medicine, Deep Longevity was acquired on 14 December 2020 by Regent Pacific Group Limited (SEHK:0575.HK), a specialist healthcare, wellness and life sciences investment group. Deep Longevity is developing explainable artificial intelligence systems to track the rate of aging at the molecular, cellular, tissue, organ, system, physiological, and psychological levels. It is also developing systems for the emerging field of longevity medicine, enabling physicians to make better decisions on the interventions that may slow down or reverse the aging processes. Deep Longevity developed the Longevity as a Service (LaaS) solution to integrate multiple deep biomarkers of aging dubbed “deep aging clocks” to provide a universal multifactorial measure of human biological age.

https://deeplongevity.com/

About Regent Pacific (SEHK:0575.HK)

Regent Pacific is a diversified investment group based in Hong Kong currently holding various corporate and strategic investments focusing on the healthcare, wellness, and life sciences sectors. The Group has a strong track record of investments and has returned approximately US$298 million to shareholders in the 21 years of financial reporting since its initial public offering.

https://www.regentpac.com/

Media Contact
Klugh Cliff
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/S2666-7568(20)30068-4

Tags: AgingBiologyDemographyGerontologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

August 25, 2025

Bacterial Strains Infecting Cattle and Humans in the US Show High Genetic Similarity

August 25, 2025

Impact of Disability, Income, and Race on Medical Leave

August 25, 2025

Study Explores How Carotid Endarterectomy Enhances Blood-Brain Barrier Integrity

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    143 shares
    Share 57 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Cyclic Thioether Additive Boosts Lithium Metal Batteries to 3,000 Stable Cycles!

Breakthroughs in Screening Techniques and Point-of-Care Diagnostics Transform Colorectal Cancer Detection

Introducing the Second Beijing Consensus on Holistic Integrative Medicine for Managing Helicobacter pylori-Associated Disease-Syndrome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.