• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

Bioengineer by Bioengineer
March 23, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Applying hydrostatic pressure as an external stimulus, Tokyo Tech and Keio University researchers demonstrate a new way to regulate singlet fission (SF), a process in which two electrons are generated from a single photon, in chromophores, opening doors to the design of SF-based materials with enhanced (photo)energy conversion. Their method overrides the strict requirements that limit the molecular design of such materials by realizing an alternative control strategy.

Hydrostatic Pressure-Enabled Tunable Singlet Fission Materials

Credit: Not required.

Applying hydrostatic pressure as an external stimulus, Tokyo Tech and Keio University researchers demonstrate a new way to regulate singlet fission (SF), a process in which two electrons are generated from a single photon, in chromophores, opening doors to the design of SF-based materials with enhanced (photo)energy conversion. Their method overrides the strict requirements that limit the molecular design of such materials by realizing an alternative control strategy.

Singlet fission (SF) is a process in which an organic chromophore (a molecule that absorbs light) in an excited singlet state transfers energy to a neighboring chromophore, resulting in two correlated triplet exciton pairs (pairs of bound electron-hole states, a “hole” signifying the absence of an electron) that decay to low energy triplet excitons. These excitons have long lifetimes and show efficient light emission, making SF promising for efficient light energy conversion.

However, the molecular design of SF-based materials is limited by the requirement that the energy of the excited singlet state must be at least equal to the energy of the two triplet states. One way to overcome this limit is by applying external stimuli, such as temperature or pressure, to manipulate the SF process.

Now, in a collaborative study published in the journal Chemical Science, Prof. Gaku Fukuhara of Tokyo Institute of Technology (Tokyo Tech) and Prof. Taku Hasobe of Keio University in Japan demonstrate, for the first time, a hydrostatic pressure-based strategy for controlling the dynamics of the SF process, opening doors to the design and fabrication of novel, tunable SF-based materials.

“We demonstrated hydrostatic pressure-controlled formation and dissociation of correlated triplet pairs in SF by means of pressure-dependent UV/vis and fluorescence spectrometry along with fluorescence lifetime and nanosecond transient absorption measurements,” explain Prof. Fukuhara and Prof. Hasobe.

In their study, the researchers used a biphenyl-bridged pentacene dimer as the model chromophore and tested its response for a range of hydrostatic pressures, from 0.1 MPa (atmospheric pressure) to 180 MPa, in three different solvents: toluene, methylcyclohexane and tetrahydrofuran.

Using a custom-built high pressure apparatus, the researchers measured the rate of exciton generation at different pressures by monitoring the fluorescence lifetime decay of the chromophore, which indicates how long the chromophore takes to emit a photon after the initial excitation. They found that the rate constant for the generation of correlated triplet exciton pairs increased with pressure, indicating that higher pressure leads to a faster SF process.

Using the technique of nanosecond transient absorption, the researchers then tracked the decay of the triplet excitons and found them to have shortened lifetimes under high pressure.

Based on quantum yield calculation and thermodynamic estimations, the researchers uncovered two mechanisms underlying the generating correlated pairs and individual excitons. In the case of the correlated exciton pairs, the SF process was driven by the solvation and desolvation of the molecule, leading to a more compact and thermodynamically stable exciton structure than the excited chromophore. In contrast, the individual excitons produced by the dissociation process were found to be thermodynamically bulkier, causing the solvent molecules to cluster around and deactivate them at high pressures.

With these findings, the researchers have shed light on the interactions between the different systems (pressure, solvent, chromophore, excitons) involved in the SF process, suggesting a suitable alternative to the conventional control strategy for SF.

“Our study provides a new perspective on the control of intramolecular SF using hydrostatic pressure as an external stimulus. This dynamic control concept could be extended to other SF scaffolds and relevant systems that are difficult to control in both ground and excited states,” speculate Prof. Fukuhara and Prof. Hasobe.

We can certainly hope to see the application of SF-based materials in the design of efficient organic solar cells and photoconversion devices.

###

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/

 

About Keio University

Established in 1858 by Yukichi Fukuzawa as a small school of Western learning, Keio has a history as Japan’s very first private institution of higher learning. Over 160 years since its founding, Keio has thrived under its founder’s motto of jitsugaku, or empirical science, as it continues to transform Japan as a modern nation through contributions to education,research, and medicine.

https://www.keio.ac.jp/en/



Journal

Chemical Science

DOI

10.1039/D3SC00312D

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Control of intramolecular singlet fission in a pentacene dimer by hydrostatic pressure

Article Publication Date

23-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Oncoscience

UPR-induced ovarian cancer cell fusion: a mechanism favoring drug resistance?

May 26, 2023
neutron star insight from particle collisions

First measurements of hypernuclei flow at RHIC

May 26, 2023

Fractons as information storage: Not yet quite tangible, but close

May 26, 2023

Emerging transmutation of quantum scars in photonic crystals

May 26, 2023

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In