• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Prenatal opioid exposure may trigger neurological, behavioral changes later in life

Bioengineer by Bioengineer
July 29, 2022
in Biology
Reading Time: 4 mins read
0
Opioids
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBIA, Mo. — While infants exposed to opioids during their mother’s pregnancy have been linked to adverse health outcomes, a new study at the University of Missouri has found prenatal opioid exposure could trigger long-term neurological or behavioral effects later in a child’s life.

Opioids

Credit: University of Missouri

COLUMBIA, Mo. — While infants exposed to opioids during their mother’s pregnancy have been linked to adverse health outcomes, a new study at the University of Missouri has found prenatal opioid exposure could trigger long-term neurological or behavioral effects later in a child’s life.

The key is the opioid’s impact on the developing fetus’ gut microbiome – a collection of bacteria and other microorganisms that naturally live inside the guts of all humans and animals and can serve as a barometer for overall health and wellness.

Cheryl Rosenfeld, a professor in the MU College of Veterinary Medicine, collaborated with Trupti Joshi, an assistant professor in the MU School of Medicine, to compare the gut microbiome of adult mice who were exposed during gestation to oxycodone, a commonly abused opioid that treats pain, in utero with the gut microbiome of mice who were not exposed to any opioids.

“Opioids are increasingly being prescribed to pregnant women to treat pain, yet when they are consumed, we are learning it is not just the mother who is being exposed, but also the fetus at a time when their organs are still developing,” Rosenfeld said. “These findings highlight the potential long-term health effects for the offspring, not just when they are born, but well into adulthood as well.”

After collecting fecal matter from both groups of mice at 120 days of age, the researchers identified significant changes and disruptions to the natural balance of bacteria in the guts of the mice who were exposed to oxycodone in utero. These changes were linked with alterations in metabolic pathways, which impacts metabolism and potentially both neurological and behavioral health long-term.

Rosenfeld added that the gut microbiome of humans is very similar to the gut microbiome of mice, making the animal a useful biomedical model for translational and precision medicine research.

“While this research can lead to human studies down the road, those can take 20 to 30 years due to the much longer lifespan of humans compared to mice,” Rosenfeld said. “The opioid epidemic, one of the biggest public health crises facing the United States, is causing real harm right now, so our goal is to raise immediate awareness and hopefully protect the health and well-being of women who are currently pregnant or seeking to become pregnant and their offspring from the potential negative and longstanding effects of opioids.”

The research is personal for Rosenfeld, whose niece was in utero when her sister-in-law was given Quaaludes to relieve anxiety. While her niece was born healthy and seemed fine early in childhood, she later developed respiratory issues, neurological issues and behavioral abnormalities in her teenage years, and is now living in a nursing home in her 30s.

“For these children who were exposed to opioids in utero, there is also now an increased risk for them to get addicted to opioids themselves, so I do worry about them as they progress into adulthood,” Rosenfeld said. “Hopefully by identifying these correlations as early as possible, potential interventions can be developed and alternative treatment options can be discussed for dealing with pain in pregnant women.”

Joshi, a bioinformatics scientist in the MU School of Medicine’s Department of Health Management and Informatics, was a clinical doctor who occasionally assisted with pregnancies in India before coming to the United States to study bioinformatics.

“Genomic sequencing technology, bioinformatics tools and computational techniques can all be applied together to help us as researchers start to find the links that tie together our physiology and our overall health,” Joshi said. “We are starting to learn how changes in the gut microbiome can potentially impact one’s mood and mental health later on in adulthood. This research helps us start to better understand the gut-brain axis, as there is a lot of communication among the brain, central nervous system, endocrine system, immune system and gut microbiome.”

“Long-term effects of developmental exposure to oxycodone on gut microbiota and relationship to adult behaviors and metabolism” was recently published in the American Society for Microbiology. Funding was provided by the National Institute of Environmental Health Sciences. Co-authors on the study include Zhen Lyu, Robert Schmidt, Rachel Martin, Madison Green, Jessica Kinkade, Jiude Mao and Nathan Bivens.

-30-



Journal

mSystems

DOI

10.1128/msystems.00336-22

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Long-Term Effects of Developmental Exposure to Oxycodone on Gut Microbiota and Relationship to Adult Behaviors and Metabolism

Article Publication Date

7-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025
3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

The Fascinating Origins of Our Numerals

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Engineered Prime Editors Minimize Genomic Errors

New Study Confronts the Cardiovascular Impact of COVID-19 Head-On

Groundbreaking Report Reveals Strategies to Address COVID-19’s Lasting Impact on Cardiovascular Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.