• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Predicting the evolution of genetic mutations

Bioengineer by Bioengineer
April 14, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: McCandlish lab/CSHL, 2020

Quantitative biologists David McCandlish and Juannan Zhou at Cold Spring Harbor Laboratory have developed an algorithm with predictive power, giving scientists the ability to see how specific genetic mutations can combine to make critical proteins change over the course of a species’s evolution.

Described in Nature Communications, the algorithm called “minimum epistasis interpolation” results in a visualization of how a protein could evolve to either become highly effective or not effective at all. They compared the functionality of thousands of versions of the protein, finding patterns in how mutations cause the protein to evolve from one functional form to another.

“Epistasis” describes any interaction between genetic mutations in which the effect of one gene is dependent upon the presence of another. In many cases, scientists assume that when reality does not align with their predictive models, these interactions between genes are at play. With this in mind, McCandlish created this new algorithm with the assumption that every mutation matters. The term “Interpolation” describes the act of predicting the evolutionary path of mutations a species might undergo to achieve optimal protein function.

The researchers created the algorithm by testing the effects of specific mutations occurring in the genes that make streptococcal GB1 protein. They chose the GB1 protein because of its complex structure, which would generate enormous numbers of possible mutations that could be combined in an enormous number of possible ways.

“Because of this complexity, visualization of this data set became so important,” says McCandlish. “We wanted to turn the numbers into a picture so that we can understand better what [the data] is telling us.”

[Video – Visualizing the evolution of a protein: https://www.youtube.com/watch?v=0miHVrncrhY]

The visualization is like a topological map. Height and color correlate with the level of protein activity and distance between points on the map represents how long it takes for the mutations to evolve to that level of activity.

The GB1 protein begins in nature with a modest level of protein activity, but may evolve to a level of higher protein activity through a series of mutations that occur in several different places.

McCandlish likens the evolutionary path of the protein to hiking, where the protein is a hiker trying to get to the highest or best mountain peaks most efficiently. Genes evolve in the same manner: with a mutation seeking the path of least resistance and increased efficiency.

To get to the next best high peak in the mountain range, the hiker is more likely to travel along the ridgeline than hike all the way back down to the valley. Going along the ridgeline efficiently avoids another potentially tough ascent. In the visualization, the valley is the blue area, where combinations of mutations result in the lowest levels of protein activity.

The algorithm shows how optimal each possible mutant sequence is and how long it will take for one genetic sequence to mutate into any of many other possible sequences. The predictive power of the tool could prove particularly valuable in situations like the COVID-19 pandemic. Researchers need to know how a virus is evolving in order to know where and when to intercept it before it reaches its most dangerous form.

McCandlish explains that the algorithm can also help “understand the genetic routes that a virus might take as it evolves to evade the immune system or gain drug resistance. If we can understand the likely routes, then maybe we can design therapies that can prevent the evolution of resistance or immune evasion.”

There are additional potential applications for such a predictive genetic algorithm, including drug development and agriculture.

“You know, at the very beginning of genetics… there was all this interesting speculation as to what these genetic spaces would look like if you could actually look at them,” McCandlish added. “Now we’re really doing it! That’s really cool.”

###

Media Contact
Sara Roncero-Menendez
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15512-5

Tags: Algorithms/ModelsBiologyEvolutionGeneticsMathematics/StatisticsRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Forceps Use Linked to Neonatal Bleeding Risks

December 19, 2025

Preoperative Nutrition Boosts Outcomes in Hirschsprung Kids

December 19, 2025

Bone Healing: Strain Effects from Loading Timing

December 19, 2025

Rethinking Sex in Science: Three Flexible Frameworks

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Forceps Use Linked to Neonatal Bleeding Risks

Preoperative Nutrition Boosts Outcomes in Hirschsprung Kids

Bone Healing: Strain Effects from Loading Timing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.