• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

PPARγ acetylation in macrophages impairs adipose tissue function

Bioengineer by Bioengineer
December 29, 2022
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As a chronic pro-inflammatory disease, obesity is closely associated with the development of various diseases such as type 2 diabetes, cardiovascular disease and cancers. Obesity is now a major concern for public health.

PPARγ acetylation in macrophages impairs adipose tissue function

Credit: Nicole Aaron, Tarik Zahr, Ying He, Lexiang Yu, Brent Mayfield, Utpal B Pajvani, Li Qiang

As a chronic pro-inflammatory disease, obesity is closely associated with the development of various diseases such as type 2 diabetes, cardiovascular disease and cancers. Obesity is now a major concern for public health.

Macrophages have been known to play an important role in the development of obesity. Recent studies have shown that adipose tissue-resident macrophages respond to the intake of fat, and regulate fat storage in a paracrine fashion. Macrophages are no longer just a “player”, but a “culprit” in the development of obesity.

A growing body of evidence indicates that the nuclear receptor peroxisome proliferation-activated receptor γ (PPARγ) plays a leading role in the development and remodeling of adipose tissue. On the one hand, PPARγ is highly expressed in adipocytes and acts as a major regulator of adipocyte differentiation and function. On the other hand, PPARγ plays anti-inflammatory roles in macrophages, and deletion of PPARγ in macrophages impairs lipid metabolism. Although accumulating evidence showed close correlation among PPARγ, macrophages and lipid metabolism, how post-translational modifications of PPARγ in macrophages regulate adipose issue remains largely unknown.

In a recent study of Life metabolism, Li Qiang group at Columbia University revealed a novel role of PPARγ acetylation in macrophages in impairing adipose tissue function (Title: Acetylation of PPARγ in macrophages promotes visceral fat degeneration in obesity, https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac032/6821742).

They constructed a mouse line that expresses a macrophage-specific, constitutive acetylation-mimetic form of PPARγ (K293Qflox/flox:LysMcre, mK293Q) to systematically analyze the role of PPARγ acetylation in macrophages both in vitro and in vivo. Under high-fat diet (HFD) conditions, mK293Q mice showed a significant increase in M1-like macrophage infiltration in epididymal white adipose tissue (eWAT), and a significant decrease in M2 polarization of macrophage, partially through Mcp1-mediated mechanisms. Metabolic and phenotypic analysis revealed that macrophage PPARγ acetylation decreased energy expenditure and exacerbated weight and fat accumulation during HFD, impairing insulin sensitivity and glucose tolerance. Further testing of metabolic indicators in the plasma of mK293Q mice revealed decreased expression of Adiponectin and Adipsin, two key adipose-secreting factors regulating systemic insulin sensitivity and glucose homeostasis, and impaired expression of genes related to adipocyte function in eWAT, as well as an overall impairment of lipid metabolism. Notably, the adipose tissue of mK293Q mice showed severe fibrosis. Thus, PPARγ acetylation in macrophages promotes macrophage infiltration, causing adipose fibrosis and dysfunction and aggravating hepatic steatosis with HFD feeding.

PPARγ synthesis activator thiazolidinediones (TZDs) are an important class of anti-diabetic drugs which inhibit the inflammatory response of macrophages and alleviate adipose tissue inflammation in vivo. In this study, the TZD drug Rosiglitazone (Rosi) was used to treat mK293Q mice after HFD feeding. The results showed that, although Rosi could to some extent rescue insulin resistance and impaired glucose tolerance in mK293Q mice, the response of eWAT to TZD drugs was compromised. Macrophage infiltration, the expression of inflammatory and anti-inflammatory factors, and the expression of adipocyte functional genes were not fully restored. In conclusion, PPARγ deacetylation in macrophages is critical for the remodeling and functional improvement of visceral adiposity in response to TZD.

Taken together, this study for the first time explores the role of macrophage PPARγ acetylation in determining adipose tissue remodeling, providing a novel mechanism of PPARγ acetylation-mediated crosstalk among multiple cells in adipose tissue.

Reference: Nicole Aaron et al. (2022). Acetylation of PPARγ in macrophages promotes visceral fat degeneration in obesity. Life Metabolism. https://doi.org/10.1093/lifemeta/loac032.

###

About Higher Education Press

Founded in May 1954, Higher Education Press Limited Company (HEP), affiliated with the Ministry of Education, is one of the earliest institutions committed to educational publishing after the establishment of P. R. China in 1949. After striving for six decades, HEP has developed into a major comprehensive publisher, with products in various forms and at different levels. Both for import and export, HEP has been striving to fill in the gap of domestic and foreign markets and meet the demand of global customers by collaborating with more than 200 partners throughout the world and selling products and services in 32 languages globally. Now, HEP ranks among China’s top publishers in terms of copyright export volume and the world’s top 50 largest publishing enterprises in terms of comprehensive strength.

About Life Metabolism

Life Metabolism is a fully open access, peer-reviewed journal that publishes one volume per year online, providing a platform for the publication of works of high significance and broad interest in all areas of metabolism. Life Metabolism welcomes several different article types, including original article, review article, research highlight, letter, editorial, perspective, and so on. Once a paper is accepted, Life Metabolism can publish a precopyedited, preproofed version of the paper online within 48 hours of receiving a signed licence, and this will be replaced by a copyedited, proofed version of the paper as soon as it is ready. The Editors-in-Chief are professors Peng Li at Tsinghua University and John R Speakman at University of Aberdeen, UK. In the first three years, there will be no publication costs for publishing in Life Metabolism, and Open Access fees will be waived.



Journal

Life Metabolism

DOI

10.1093/lifemeta/loac032

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

Acetylation of PPARγ in macrophages promotes visceral fat degeneration in obesity

Article Publication Date

11-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

The two strategies that mutant measles viruses use to infect the brain

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023
Ólafsdóttir & Lind

Testing a immunological drug as a new treatment for early type 1 diabetes

January 27, 2023

Study shows FDA-approved TB regimen may not work against the deadliest form of TB due to multidrug-resistant strains

January 27, 2023

Non-invasive neurotechnology reduces symptoms of insomnia and improves autonomic nervous system function

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

People with arthritis 20% less likely to be in work

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In