• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Powering neutron science

Bioengineer by Bioengineer
February 1, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Osaka, Japan – Scientists from the Institute of Laser Engineering at Osaka University determined the mechanism and functional form for the yield of neutrons from a laser-driven source, and used it to carry out a neutron resonance analysis much faster than conventional methods. This work may help bring non-invasive testing to more applications in manufacturing and medicine.

Fig. 1

Credit: ILE, Osaka University

Osaka, Japan – Scientists from the Institute of Laser Engineering at Osaka University determined the mechanism and functional form for the yield of neutrons from a laser-driven source, and used it to carry out a neutron resonance analysis much faster than conventional methods. This work may help bring non-invasive testing to more applications in manufacturing and medicine.

While most microscopes use photons or even electrons to study small samples, scientists have also employed neutrons in a wide array of tests, such as in neutron scattering, to study both manufactured samples as well as biological specimens. As neutral particles, neutrons are ideal for non-destructive investigation of the magnetic and atomic properties of objects under consideration, since they are unaffected by electric charge. Newer methods exist for producing neutrons in large numbers, like using laser-driven neutron sources, but the underlying mechanism remains unclear.

Now, a team of researchers lead by Osaka University developed a laser-driven neutron source and determined a new scaling law between the laser intensity and the number of neutrons produced. They found that increasing the intensity yielded neutrons proportional to the fourth power, which can lead to very large changes based on relatively small investments of additional power. Using this law, an analysis called neutron resonance absorption was performed to identify the elements in the experimental sample. “Neutron sources can be used in applications ranging from radiography, spectroscopy, security, to medicine,” says first author Akifumi Yogo.

In an experiment, the researchers directed an extremely powerful laser beam at a foil of deuterated polystyrene. The ions that came out collided with a block of beryllium, which in turn created a large flux of neutrons. A small moderator device was used to slow the neutrons so they would be moving the correct speed to pass through the sample. Based on the neutron absorption rate, the atoms in the sample could be determined. “We successfully reduced the measurement time from several hours to a tiny fraction of a second, enabling single-shot experiments involving fast phenomena,” says senior author Ryosuke Kodama.

Processes that occur over the course of seconds or minutes can now be monitored in real time, which was not possible using older methods with lower neutron intensities. The results of this research can lead to significant increases in speed for industrial quality control or biological sample identification.

###

The work is published in Physical Review X as “Laser-driven Neutron Generation Realizing Single-Shot Resonance Spectroscopy” DOI: https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.011011



Journal

Physical Review X

DOI

10.1103/PhysRevX.13.011011

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Laser-driven Neutron Generation Realizing Single-Shot Resonance Spectroscopy

Article Publication Date

31-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Occupational Gaps and Cognitive Decline in Seniors

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.