• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

POSTECH-Catholic University researchers develop myocardial infarction treatment patch

Bioengineer by Bioengineer
December 16, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Myocardial infarction is an ischemic disease in which a coronary artery supplying blood to the heart muscle is stenotic or obstructed, resulting in cardiac tissue necrosis. Due to the irreversible loss of cardiomyocytes, damaged heart tissue cannot be naturally regenerated. The most recent effort to regenerate the damaged heart tissue is to transplant stem cells to the damaged area. However, this approach has low engraftment rates stemming from the highly curved surface of the heart and its dynamic nature – hindering the cells from settling on the heart to allow time for cell regeneration.

Figure 1

Credit: POSTECH

Myocardial infarction is an ischemic disease in which a coronary artery supplying blood to the heart muscle is stenotic or obstructed, resulting in cardiac tissue necrosis. Due to the irreversible loss of cardiomyocytes, damaged heart tissue cannot be naturally regenerated. The most recent effort to regenerate the damaged heart tissue is to transplant stem cells to the damaged area. However, this approach has low engraftment rates stemming from the highly curved surface of the heart and its dynamic nature – hindering the cells from settling on the heart to allow time for cell regeneration.

 

A joint team of Professor Dong Sung Kim and Dr. Andrew Choi (Department of Mechanical Engineering) from POSTECH, professors Hun-Jun Park and Dr. Hyeok Kim (College of Medicine) from Catholic University of Korea, and Professor Kiwon Ban of the City University of Hong Kong announced the successful transplantation of a highly integrable in vivo priming bone marrow mesenchymal stem cell (BMSC) sheet based on the utilization of a thermos-responsive nanofiber membrane. Their work has attracted attention from academic circles for developing a human umbilical vein endothelial cell (HUVEC) sheet specially designed for enhancement of an angiogenesis (formation of new blood vessels from pre-existing vessels), which promoted cardiac repair when transplanted together with the BMSC sheet.

 

Stem cells are pluripotent when they have yet to be differentiated and are able to self-renew by dividing and developing into all cell types. When transplanted, they promote new tissue regeneration, which can be applied to treat incurable diseases. From here, cell sheet engineering takes a further step by enabling the transplant of cell sheet made only of stem cells to damaged areas for promoting tissue regeneration.

 

Attempts to treat myocardial infarction with various types of patches were stymied as the heart’s curved shape and constant pulsing prevent such a patch from staying in place. The joint team of researchers decided to use a BMSC sheet on a thermos-responsive nanofiber membrane. This stem cell sheet, rich in the extracellular matrix, has strong adhesion and the advantage of being able to anchor many cells to the required location. Along with this sheet, the researchers transplanted another sheet made of HUVECs.

 

After the transplantation, the team found that a prolonged secretion of multiple angiogenic cytokines, such as vascular endothelial growth factor, angiopoietin-1, and insulin-like growth factor-1 promoted angiogenesis, leading to a significant improvement in the cardiac function, including intrinsic contractibility and remodeling.

 

This technique is assessed to have proposed a new-concept heart patch by improving the heart function for the treatment of myocardial infarction as well as increasing integration and engraftment rates, which have been some of the challenges of utilizing patches.

 

This research, published in Biofabrication – one of the prestigious journals in biomaterials – was supported by the National Research Foundation of Korea and the Tung Biomedical Sciences Center in Hong Kong.



Journal

Biofabrication

DOI

10.1088/1758-5090/ac8dc9

Article Title

Sutureless transplantation of in vivo priming human mesenchymal stem cell sheet promotes the therapeutic potential for cardiac repair

Article Publication Date

27-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Patient and Physician Perspectives on Evolocumab Use

August 27, 2025

Organ Preservation: Who Accesses the Data?

August 27, 2025

Prioritizing Student Mental Health: Key Insights from BMES

August 27, 2025

Revolutionizing Plant Biology: Advances in Genome Synthesis

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Liverpool’s Professor Matt Rosseinsky Honored with Royal Medal for Groundbreaking Materials Science Research

Patient and Physician Perspectives on Evolocumab Use

Organ Preservation: Who Accesses the Data?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.