• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

PolyU's nano-encapsulation technology enhances DHA absorption for early brain development

Bioengineer by Bioengineer
January 31, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The Hong Kong Polytechnic University


The Hong Kong Polytechnic University (PolyU) today announced the findings on its novel nano-encapsulation technology for optimising the maternal and fetal absorption of docosahexaenoic acid (DHA). The research, conducted by PolyU’s Department of Applied Biology and Chemical Technology (ABCT), aimed to address the delivery and absorption issues of DHA that affect its potency and efficacy.

DHA, a type of Omega-3 fatty acid naturally found in breast milk and fish oil, is an important nutrient for the development and function of brain. It is primarily obtained from diet, and preferentially transferred from mother to fetus across the placenta during fetal life. However, for people with problem in getting sufficient DHA from normal dietary sources, particularly those in late pregnancy, early childhood, or with cancer or declining cognitive abilities, DHA supplementation is recommended. Given DHA is highly unsaturated and is vulnerable to oxidation and degradation under acid conditions, it is uncertain that the intake of DHA through supplementation will be effectively delivered and absorbed in vivo.

Led by Dr Wang Yi, Assistant Professor of ABCT, and Professor Wong Man-sau, Professor of ABCT, the research team innovated a nano-encapsulation technology to protect DHA from oxidation. The team used Zein, an edible corn protein, as the encapsulation material to mimic milk fat globule membrane. The nano-encapsulation forms a core-shell structure to protect DHA in fish oil throughout gastric digestion and facilitate DHA absorption in brain, intestine and placenta.

“Our team innovated the nano-encapsulation technology, which is proven to be an effective technology to protect DHA from oxidation in vivo, thus enhancing the absorption and efficacy of DHA. Our findings also indicated that the technology can help overcome blood-brain barrier in DHA delivery. We therefore believe that the technology could be further applied to enhance the efficiency of drug delivery for the brain, such as those for patients with dementia or Alzheimer’s disease,” said Dr Wang Yi.

DHA in maternal tissues

To test the effectiveness of nano-encapsulation technology in enhancing DHA absorption, PolyU’s team conducted some experiments on maternal mice and their offsprings.

In two groups of maternal mice, each of six, fed with normal fish oil (Normal FO) and nano-encapsulated fish oil (Nano FO) respectively, it was found that the DHA concentration in the duodenum and jejunum of the Nano FO group is significantly higher than the Normal FO group (see Figure 1). The result implies that DHA, being protected by the encapsulation structure from oxidation and degradation under stomach’s acidic conditions, is successfully released in the upper two parts of the small intestine of the Nano FO group.

Also, the DHA contents in the brain of the Nano FO maternal mice were significantly higher (see Figure 2). This indicates that DHA was delivered to the brain of the Nano FO group more effectively as the challenge of the blood-brain barrier was overcome.

DHA in the offsprings

The team also conducted tracer studies on the offsprings of the maternal mice. The mice were divided into six groups, each with 10, and were fed with different diets including: 1) no DHA meal; 2) Zein; 3) normal low dose fish oil (Normal FO-low); 4) normal high dose fish oil (Normal FO-high); 5) Nano-encapsulated low dose fish oil (Nano FO-low); and 6) Nano-encapsulated high dose fish oil (Nano FO-high).

The findings showed that the three groups, namely: Normal FO-high, Nano FO-low and Nano FO-high spent more time on novel objects rather than on familiar objects (see Figure 3), implying that they were more curious about new things and demonstrated better memory and learning capabilities.

For the Nano FO-high group, they had higher amount of Brain-Derived Neurotrophic Factor (BDNF) in hippocampus (see Figure 4). BDNF, a protein activated by DHA, plays an important role in supporting the survival of existing brain neurons and encouraging the growth and differentiation of new neurons and synapses. They also demonstrated a significant difference to other groups in terms of better spatial learning and memory abilities in the Y-maze experiment (see Figure 5).

###

The research project was funded by the Health and Medical Research Fund (HMRF) of the Food and Health Bureau of the Hong Kong SAR Government and the Shenzhen Basic Research (Layout of Disciplines) Project Fund.

Media Contact
Christina Wu
[email protected]
852-340-02130

Related Journal Article

http://dx.doi.org/10.1016/j.nano.2018.09.006

Tags: GynecologyMedicine/HealthneurobiologyNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

July 31, 2025
blank

KDM7A Regulates Neural Differentiation via FGF4

July 31, 2025

Reducing Roadway Fatalities: The Science of Shared Responsibility and Innovative Safety Solutions

July 31, 2025

Long-Term Air Pollution Exposure Linked to Obesity Types

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rising Overtopping Risks for U.S. Dams Revealed

Maternal Emulsifiers Impact Offspring Gut, Disease Risk

Home Phototherapy Effective for Neonatal Jaundice: Review

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.