• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pollutants from wildfires affect crop and vegetation growth hundreds of kilometers from impact zone

Bioengineer by Bioengineer
December 21, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Credit Wuxing Wan


Pollutants from wild fires affect crop and vegetation growth hundreds of kilometres from impact zone, research shows

The startling extent to which violent wild fires, similar to those that ravaged large swathes of California recently, affect forests and crops way beyond the boundaries of the blaze has been revealed.

A pioneering new study by Professor Nadine Unger of the University of Exeter and Professor Xu Yue of the Institute of Atmospheric Physics in Beijing, has revealed that pollutants released by the devastating wild fires can affect crop and vegetation growth hundreds of kilometres from the fire impact zone.

The study examined how ozone and aerosols – two by-product pollutants of wildfires – influences healthy plant growth in areas that are seemingly unaffected by the destructive natural disasters.

It found that there was a significant reduction in plant productivity in areas far away from the fire’s borders. The study suggests that fire pollution could pose an increasing threat to regional, and even global, productivity in the warming future world.

The study is published in Nature Communications on December 21 2018.

Professor Unger, from the University of Exeter’s Mathematics department said: “The impacts of these wildfires on public health has been widely recognized, but the impact they also have on our ecosystems is less known.

“What we have found is that the pollutants released by these fires impact plants in areas way beyond the boundaries of the disaster. Globally, over the past decade, fire ozone pollution reduced plant productivity substantially more than estimated drought losses.”

The impact of fire on the Earth’s carbon budget has been well documented. Each year, global fires directly emit large amounts of carbon directly into the atmosphere. This immediate carbon loss is partially compensated by a boost in new ecosystem productivity, driven by changes to canopy composition and soil respiration.

For the study, scientists used state-of-the-art computer models, together with a vast array of existing measurement datasets, to assess the separate and combined effects of fire pollutants from 2002-11.

It found that the Gross Primary Productivity (GPP) – essentially plant photosynthesis – was significantly reduced when the amount of surface ozone increases.

Crucially, this reduction in GPP was not confined to the areas immediately in and surrounding the fires. It found that areas downwind from the fires, hundreds of kilometres away, experienced significantly reduced plant productivity.

Crops and vegetation in sub-Saharan Africa were identified as a particularly vulnerable hot spots to fire ozone pollution damage.

The study suggests that the ecological impacts of this air pollution is far greater than previously thought – potentially impacting crop production that is crucial to the survival of rural, remote communities.

Professor Unger added: “To the extent that we are worried about fire particulate pollution affecting human respiratory health, we need to be concerned about fire ozone pollution damaging forest and agricultural productivity downwind. We are now using the UK Met Office Hadley Centre Earth System Model to predict how increasing fire activity, air pollution, and drought affect the ability of the land surface to grow food and to take up carbon dioxide in the future warmer world.”

Fire air pollution reduces global terrestrial productivity” by Professor Xu Yue and Professor Nadine Unger is published in Nature Communications on Friday, December 21st

###

Media Contact
Duncan Sandes
[email protected]
44-013-927-22391

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07921-4

Tags: Atmospheric SciencePlant SciencesPollution/RemediationWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Physicists Unravel the Enigma of Mysterious Membrane Dynamics

Physicists Unravel the Enigma of Mysterious Membrane Dynamics

August 1, 2025

Yellowstone Wolves Travel Extensive Distances to Remain Close to Prey

August 1, 2025

Beyond Inversions: Genome Evolution Through Translocations and Fusions

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary AI Technology Paves the Way for Innovative Materials to Replace Lithium-Ion Batteries

Rising Use of Cannabis for Chronic Health Issues Amid Ongoing Uncertainty

Moffitt Cancer Center Initiates Study to Enhance Advanced Lung Cancer Outcomes in Black Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.