• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers

Bioengineer by Bioengineer
September 2, 2022
in Chemistry
Reading Time: 3 mins read
0
Nanofabrication of metafibers and the applications in ultrashort laser pulse generations.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Integrating plasmonic metasurfaces on optical fibre tips forming so-called metafibers enrichs the functionalities of an ordinary optical fibre, yielding a variety of advanced applications such as planar waveshaping, super-resolution imaging, and ultracompact sensing. However, to date, plasmonic metafibers have predominantly explored separate bare fibres, and little attention has been paid to their practical applications in nonlinear plasmonic regimes. There are certain challenges for the widespread uptake of metafibers as regular component devices for fibre optics: a) nanofabrication suffers from inevitable mechanical vibrations and thus a poor repeatability of nanostructures due to the large aspect ratio of bare fibres; b) the connections between the functionalised bare fibres and standard optical fibres introduce potential contaminations and even damage to the plasmonic metasurfaces. Thus, methods to fabricate metafibers with a reproducible metasurface geometry and standard adapting interfaces are clearly needed.

Nanofabrication of metafibers and the applications in ultrashort laser pulse generations.

Credit: by Lei Zhang, Huiru Zhang, Ni Tang, Xiren Chen, Fengjiang Liu, Xiaoyu Sun, Hongyan Yu, Xinyu Sun, Qiannan Jia, Boqu Chen, Benoit Cluzel, Philippe Grelu, Aurelien Coillet, Feng Qiu, Lei Ying, Wei E. I. Sha, Xiaofeng Liu, Jianrong Qiu, Ding Zhao, Wei Yan, Duanduan Wu, Xiang Shen, Jiyong Wang, and Min Qiu

Integrating plasmonic metasurfaces on optical fibre tips forming so-called metafibers enrichs the functionalities of an ordinary optical fibre, yielding a variety of advanced applications such as planar waveshaping, super-resolution imaging, and ultracompact sensing. However, to date, plasmonic metafibers have predominantly explored separate bare fibres, and little attention has been paid to their practical applications in nonlinear plasmonic regimes. There are certain challenges for the widespread uptake of metafibers as regular component devices for fibre optics: a) nanofabrication suffers from inevitable mechanical vibrations and thus a poor repeatability of nanostructures due to the large aspect ratio of bare fibres; b) the connections between the functionalised bare fibres and standard optical fibres introduce potential contaminations and even damage to the plasmonic metasurfaces. Thus, methods to fabricate metafibers with a reproducible metasurface geometry and standard adapting interfaces are clearly needed.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Miu Qiu and Dr. Jiyong Wang from Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, China, and co-workers developed the methodologies that integrate well-defined metasurfaces directly on the endfaces of commercial single mode fibre jumpers (SMFJs), by using the standard planar technologies, e.g., electron-beam lithography (EBL) and focused ions beam (FIB).

“Because only standard nanofabrication techniques are required, the process flow can be accessed by worldwide cleanrooms.” Prof. Min Qiu said.

The fabricated metafibers were further implemented into the fibre laser cavities to serve as a special saturable absorber-one important optical element to general ultrashort laser pulses.

“By tuning the plasmonic resonances of the metafibres, we realized all-fiber sub-picosecond soliton mode-locking at different wavelength bands.” Prof. Xiang Shen said.

Besides of the experimental work, they also established a mathematic mode for quantifying the saturable absorption of plasmonic metasurfaces and clarify the underlying physical mechanisms of nonlinear optic effects.

“Such plasmonic metafibers provide new perspectives on ultrathin nonlinear saturable absorbers for applications where tunable nonlinear transfer functions are needed, such as in ultrafast lasers or neuromorphic circuits. The work paves the way towards ‘all-in-fibers’ optical systems for sensing, imaging, communications, and many others.” Dr. Jiyong Wang added.



Journal

Light: Advanced Manufacturing

DOI

10.37188/lam.2022.045

Share12Tweet8Share2ShareShareShare2

Related Posts

WashU Chemists Uncover New Insights Into Protein Linked to ALS

WashU Chemists Uncover New Insights Into Protein Linked to ALS

October 14, 2025
blank

SwRI’s Dr. Chris Thomas Honored as AIAA Associate Fellow

October 14, 2025

Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials

October 14, 2025

Could Cardamom Seeds Unlock New Antiviral Therapies?

October 14, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Telpegfilgrastim Prevents Chemotherapy-Induced Neutropenia

CHEST and City of Chicago Declare October 19 as “Love Your Lungs Day” to Promote Respiratory Health

WashU Chemists Uncover New Insights Into Protein Linked to ALS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.