• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plastic pollution kills sea urchin larvae

Bioengineer by Bioengineer
December 15, 2022
in Biology
Reading Time: 3 mins read
0
Sea urchin development
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sea urchin larvae raised in high levels of plastic pollution die due to developmental abnormalities, new research shows.

Sea urchin development

Credit: Dr Eva Jimenez-Guri

Sea urchin larvae raised in high levels of plastic pollution die due to developmental abnormalities, new research shows.

Scientists put fertilised urchin eggs in seawater with varying levels of plastic, and compared the effects of newly made PVC pellets (called nurdles) with fragments collected on beaches.   

In all three concentrations tested (1%, 5% and 10% of plastic in seawater), PVC led to significant abnormalities and all urchin larvae died.

Beach-collected fragments at 10% concentration also killed the larvae, which developed no proper shape.

Lower concentrations of beach-collected plastic did not kill the embryos, suggesting newly made plastic – which still contains high levels of additives that can leach out – are more harmful.

Although the concentrations tested in the study are rare in the oceans, they could occur after spills of plastic or in areas like the tide line where pollution accumulates.

The research team – from the Anton Dohrn Zoological Station and National Biodiversity Future Center (Italy), and the University of Exeter (UK) – previously found plastic additives can harm sea urchin larvae, and the new study develops this and reveals how this harm is caused.

“The larvae affected by plastic pollution showed developmental abnormalities including malformation of the skeleton, neural and immune cells,” said  Dr Eva Jimenez-Guri, from the Anton Dohrn Zoological Station and the University of Exeter.

“They also showed ‘radialisation’ – meaning they lacked proper symmetrical structure, and were instead largely formless and therefore unable to survive.

“In these larvae, mitochondria (the ‘powerhouses’ of cells) didn’t work properly, and they showed signs of oxidative stress, which damages cells.”

The study reveals the genetic processes behind these abnormalities.

In the case of new PVC nurdles, the damage was caused by high concentrations of zinc that leached into the water.

Larvae exposed 10% PVC pollution developed their gut outside their body, while the 5% and 1% levels also lead to fatal abnormalities.

The beach-collected samples – gathered in Cornwall, UK – did not release high levels of zinc, as most of the additives they contained would already have been released in the sea.

However, such particles are known to collect a variety of organic pollutants, and the release of these pollutants explains the abnormalities seen in this study.

“Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of sea urchin larvae,” said Dr Jimenez-Guri.

“We have identified the genes that are affected by these pollutants, and we know many animal species rely on the same genes for key early stages of development.

“So it’s possible that plastic pollution could cause similar abnormalities in other species, and we are already investigating this in the next stage of our research.

“While the levels of pollution assessed in the study are not common in the ocean, marine plastic pollution continues to increase at a rapid rate – with potentially serious consequences for marine life.”

Dr Jimenez-Guri’s work was funded by a Marie Skłodowska-Curie fellowship.

The paper, published in the journal Science of the Total Environment, is entitled: “Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the molecular pathways affected by PVC.”



Journal

Science of The Total Environment

DOI

10.1016/j.scitotenv.2022.160901

Method of Research

Observational study

Subject of Research

Animals

Article Title

Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the molecular pathways affected by PVC

Article Publication Date

13-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Neuro-Imaging in cCMV Infection

Sustainable Thermal Insulation: Bio-Based Nanocellulose Aerogels Enhance Fire Safety

Electrodynamics at Photonic Temporal Interfaces Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.