• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Plants modulate accumulation of metabolites at organ level

Bioengineer by Bioengineer
November 11, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Danny Kessler / Max Planck Institute for Chemical Ecology

Scientists from the Max Planck Institute for Chemical Ecology in Jena and the University of Heidelberg, Germany, illuminated the diversity and different accumulation of chemical substances in the tissues of the ecological model plant Nicotiana attenuata. For their results, they used computational metabolomics and information theory. This approach was specifically designed for this study and enabled the researchers to study plant metabolism at the level of single organs. This new method allows for a more efficient access to the diversity of plant metabolites and for a more rapid identification of the genes which regulate their biosynthesis. (Proceedings of the National Academy of Sciences of the United States of America, November 2016, DOI: 10.1073/pnas.1610218113)

Plants are master organic chemists. They are able to produce very complex blends of different chemical substances. The biosynthesis and the accumulation of plant secondary metabolites are physiologically adapted to the individual requirements in the respective plant tissues. A team of scientists led by Emmanuel Gaquerel from the University of Heidelberg and Ian Baldwin from the Max Planck Institute for Chemical Ecology has now analyzed the metabolome, the entire set of chemicals, in the tissues of the ecological model plant Nicotiana attenuata.

The following questions were of central interest: Which plant tissues exhibit distinct metabolic profiles, which plant secondary metabolites are primarily accumulated locally in the tissues of particular organs, and finally, how can this information contribute to the identification of the genes that regulate metabolite production?

To answer these questions, the researchers harnessed the emerging research field of metabolomics and developed new computational methods for the assessment of analytical data retrieved from the mass spectrometric substance analyses. The goal of metabolome research is to identify and quantify the entirety of metabolites of an organism and their interactions. "We implemented a workflow that allows metabolite spectra to be rapidly aligned so as to make predictions about metabolite identity," Emmanuel Gaquerel explains. "Computational metabolomics encompasses all bioinformatics approaches that facilitate computer-based inferences on the annotation of unknown metabolites from large-scale complex metabolomics data."

For their study, the scientists analyzed the metabolic profiles of 14 different dissected tissues of tobacco plants, such as the floral organs, the stem, leaves, seeds and roots. "We had expected that the metabolic profiles of floral organs would differ significantly from other parts of the plant. However, there were also considerable differences between the individual floral organs. The very high degree of metabolic specialization we found in the anthers of tobacco flowers came as a particular surprise," Dapeng Li, first author of the study and a PhD student at the Max Planck Institute, reports. The anthers belong to the stamens, which are considered the male parts of a flower. They contain the pollen sacs in which pollen is produced. Anthers contain specific phenolic derivatives, which have also been found in the pollen coat in previous studies. The biosynthesis of these phenolic derivatives and their accumulation in the anthers substantially contribute to the unique metabolic profile of the male reproduction organs.

The application of tools and concepts based on information theory approaches in order to score metabolic diversity facilitated new insights into the function of single substances in this study. The key idea is to consider tissue metabolic diversity as a type of information, like any other, which can be statistically analyzed. In order to link metabolic function to individual genes, the scientists developed an atlas of genes and secondary metabolites which share similar activation patterns in the different tissues of tobacco plants. Based on these patterns, they were able to identify candidate genes which may be responsible for regulating the biosynthesis of ecologically-important secondary metabolite. Particularly with respect to metabolites whose biosynthesis has not yet been elucidated, this new approach has a trend-setting potential and will contribute considerably to further research in plant metabolism.

Ian Baldwin, director of the Department of Molecular Ecology at the Jena Max Planck Institute, contributed immensely to the fact that Nicotiana attenuata has become an important model organism for studying interactions between plants and their environment. "Plants modulate in a very sophisticated manner their accumulations of metabolites at tissue/organ levels. Elucidating how this is achieved is central if we are to understand how plants survive in nature," Baldwin summarizes the results of the new study. [AO/KG]

###

Original Publication:

Li, D., Heiling, S., Baldwin, I. T., Gaquerel, E. (2016). Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences of the United States of America, Early Edition, DOI: 10.1073/pnas.1610218113

http://dx.doi.org/10.1073/pnas.1610218113

Further Information:

Prof. Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, 49-3641 57-1101, E-Mail [email protected]

Dr. Emmanuel Gaquerel, Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, 49-6221 54-5589, E-Mail [email protected]

Contact and Media Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, 49-3641 57-2110, E-Mail [email protected]

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Media Contact

Dr. Emmanuel Gaquerel
[email protected]
49-622-154-5589

http://www.ice.mpg.de

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Scientists shed light on how and why some people report “hearing the dead”

January 18, 2021
IMAGE

Changing diets — not less physical activity — may best explain childhood obesity crisis

January 18, 2021

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021

Rapid blood test identifies COVID-19 patients at high risk of severe disease

January 15, 2021
Next Post
blank

Genomic tools to combat the spread of the invasive Asian longhorned beetle

Anesthesia changes neuronal choreography

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Infectious/Emerging DiseasesClimate ChangePublic HealthMedicine/HealthBiologyCell BiologycancerMaterialsGeneticsEcology/EnvironmentChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science

Recent Posts

  • Scientists shed light on how and why some people report “hearing the dead”
  • Changing diets — not less physical activity — may best explain childhood obesity crisis
  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In