• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Plant scientists study the interaction of heat stress responses in corn

Bioengineer by Bioengineer
August 28, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ISU News Service

AMES, Iowa – Environmental extremes driven by climate change create stresses in crops, and plant breeders are attempting to untangle the genetic factors that endow plants with tolerance to stress. A new study from Iowa State University scientists shows how two seemingly unrelated responses in corn plants interact to help the crop survive heat stress.

The study, published on Tuesday in the academic journal The Plant Cell, shows how a response called the unfolded protein response helps to activate the heat shock response when corn plants are exposed to hot weather conditions. The two responses operate in different parts of plant cells, and scientists previously assumed the responses were independent. But data gathered using the Enviratron, a highly controlled and automated facility at Iowa State equipped with a robotic rover and growth chambers, allowed the research team to show how one response influences another.

“These two systems have been thought to operate independently,” said Stephen Howell, Distinguished Professor of Genetics, Development and Cell Biology and senior author of the study. “We’ve been able to show these systems sometimes work together to mitigate damage caused by heat and to protect the plant from stress.”

Heat stress causes proteins to denature and misfold in the endoplasmic reticulum, an organelle inside cells. Misfolded proteins can be toxic, and their buildup sets off an alarm that activates the expression of genes that protects plants from heat stress. A similar response plays out in different locations of the cell, including the cytoplasm, where excessive heat activates the expression of a different set of genes encoding heat-shock proteins.

The new study shows that, although the two responses take place in different parts of the cell, they actually work in concert during heat stress: a powerful transcription factor produced in the unfolded protein response activates the expression of a key factor helping to trigger the heat shock response.

The scientists found that knocking out the unfolded protein response made corn plants more susceptible to heat stress and hindered the heat shock response. That raises the question if overexpressing the misfolded protein response could strengthen the ability of corn plants to withstand high heat, but Howell said doing so may have other undesirable consequences.

“There’s a seesaw balance, if you will, between defense and growth,” he said. “The more you contribute to defense, the more you sacrifice growth. It may be that you could provide somewhat greater defense to crops but you might do so at the expense of growth.”

In their study, the researchers drew on data gathered in the Enviratron, a state-of-the-art facility at the ISU Ag Engineering/Agronomy Research Farm that utilizes a robotic rover that travels through a series of specialized growth chambers that carefully control the environments in which the plants are raised. Development of the Enviratron was funded through a grant from the National Science Foundation. Zhaoxia Li, first author of the paper and a postdoctoral scientist in Howell’s lab, said the facility allows researchers to control variables such as temperature, moisture, light and carbon dioxide concentrations to study their effect on plant development.

Howell said previous scientific papers have described the design and construction of the Enviratron, but this is the first publication in a journal based on data generated in the facility.

“We hope that studies like this will emphasize the value of conducting such research under controlled environmental conditions offered by the Enviratron,” he said.

###

Media Contact
Fred Love
[email protected]

Original Source

https://www.news.iastate.edu/news/2020/08/26/enviratronheatstress

Related Journal Article

http://dx.doi.org/10.1105/tpc.20.00260

Tags: Agricultural Production/EconomicsAgricultureBiologyCell BiologyClimate ChangeEcology/EnvironmentGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Anopheles gambiae Habitat and Public Health in Osun

December 21, 2025
Genetic Insights into Aedes aegypti Expansion in California

Genetic Insights into Aedes aegypti Expansion in California

December 21, 2025

Autophagy and HSP70 Drive Mytilus Thermal Stress Adaptation

December 20, 2025

Moringa Seed Extracts Mitigate Heat Stress in Rabbits

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Male Nurses in East Africa: Striving for Recognition

Evaluating BioPMovQ’s Effectiveness in Elderly Pain Patients

Anopheles gambiae Habitat and Public Health in Osun

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.