• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Plant peptide helps roots to branch out in the right places

Bioengineer by Bioengineer
January 18, 2019
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kobe University


How do plants space out their roots? A Japanese research team has identified a peptide and its receptor that help lateral roots to grow with the right spacing. The findings were published on December 20, 2018 in the online edition of Developmental Cell.

The team was led by Professor Hidehiro Fukaki (Graduate School of Science, Kobe University), Researcher Koichi Toyokura (currently JSPS Research Fellow at Osaka University) and Project Assistant Professor Tatsuaki Goh (currently Assistant Professor at the Nara Institute of Science and Technology) in collaboration with Professor Yoshikatsu Matsubayashi and Assistant Professor Hidefumi Shinohara (both from Nagoya University) and other researchers from the Nara Institute of Science and Technology, Associated Professor Koichi Fujimoto (Osaka University) and Assistant Professor Yuki Kondo (the University of Tokyo).

Plant root systems are mainly shaped by the lateral roots that grow from tissue inside the existing roots. These roots form from “lateral root founder cells” that are positioned at regularly-spaced intervals at a distance from the meristem tissue (tissue responsible for growth). Previous studies using Arabidopsis plants showed that lateral root founder cells are made from sites where there is high response to the chemical auxin, and indicated that transcription factor LBD16 induced by auxin may inhibit the cells near lateral root founder cells from forming roots.

This time a joint research team, using plant model Arabidopsis, searched for the gene that is activated by transcription factor LBD16 and successfully identified the TOLS2 gene. The TOLS2 gene is mainly expressed in lateral root founder cells and root germs. In Arabidopsis plants that overexpress TOLS2, the number of lateral roots decreases (figure 1), indicating that the TOLS2 gene can inhibit the formation of lateral root founder cells. The team analyzed secretions from plants with overexpression of TOLS2 and revealed that the mature TOLS2 peptide is formed from 11 amino acids. When they artificially created mature TOLS2 peptide and added it to a wild-type Arabidopsis, the number of lateral root founder cells and lateral roots decreased (figure 2).

Based on further investigation, the research team identified the receptor for TOLS2 as RLK7. RLK7 proteins express in the inner sheath of the roots (where the lateral root founder cells are located), the endodermis and the dermal layer, but RLK7 expression could not be found in the lateral root founder cells. It is likely that these proteins suppress the formation of lateral roots in cells adjacent to lateral root founder cells.

Next, using CRISPR/Cas9 genome editing technology, the team investigated how lateral roots form in other genetically-altered plant samples. Their results confirmed that the TOLS2 peptide and the RLK7 receptor are necessary to preserve the correct spacing between lateral root founder cells. From this analysis the research team proposed that Arabidopsis, by responding to auxin and inducing TOLS2 peptide in lateral root founder cells, through RLK7 receptors inhibits nearby lateral root founder cells in a non-cell-autonomous manner (figure 3).

Professor Fukaki comments: “If the mechanism for TOLS2 peptide-based inhibition of nearby lateral root founder cells is clarified in Arabidopsis, this will help us to understand root formation mechanisms in other plants such as crops and trees. And if other plants contain peptides that fulfil the same function as the TOLS2 peptide, we could potentially use this mechanism to artificially control root formation patterns for crops and trees.”

###

Media Contact
Eleanor Wyllie
[email protected]

Original Source

http://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2019_01_18_01.html

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2018.11.031

Tags: BiochemistryBiologyCell BiologyDevelopmental/Reproductive BiologyGenesGeneticsMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.