• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plant pathogens reorder physical structures of effectors to escape plant recognition

Bioengineer by Bioengineer
September 2, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The American Phytopathology Society

Phytophthora infestans is an oomycete, or water mold, that causes the devastating potato disease known as late blight or potato blight and was responsible for the famous Irish Famine of the 1840s. In a recently published study, a group of scientists focused on the effectors of that pathogen and confirmed that plant pathogens employ an array of mechanisms to escape plant immunity response. These mechanisms explain why integrated resistance in plants cannot last long.

The scientists analyzed the genomic characters of the pathogen’s AVR2 gene and the physical and biochemical properties of its effectors and found a substantial variation in the nucleotide sequences of the AVR2 genes generated from different P. infestans isolates and that these sequence variations were generated by many genetic mechanisms, including base substations, partial translation of the gene to the effectors, a small loss/gain of DNA sequence, and recombination.

“Bioinformatics analyses indicate that the virulent AVR2 effectors are proteins partially lacking three-dimension structure, known as disordered proteins, while avirulent effectors are ordered proteins with predicted crystal structures,” explained Jiasui Zhan, one of the scientists involved in the study. “Each of the virulent effectors has one or two short linear interaction regions of ear-marked characters of disordered proteins. No such regions are found in the avirulent effectors. Furthermore, virulent AVR2 effectors are predicted to be less stable and have a shorter protein half-life than the avirulent effectors.”

These results suggest that plant pathogens adopt a novel mechanism to escape plant recognition through reordering the physical structures of effector proteins. Through combining population genome and in vivo analyses of pathogenicity, Zhan and colleagues were able to draw the evolutionary pattern in groups rather than ad hoc phenomenon of single or a few samples in the similar studies and to verify the evolutionary inferences experimentally with statistical rigidness and robustness.

“This study highlights the fact that a subtle modification in gene sequence such as single base substitution may generate a huge corresponding change in protein properties of effectors and maybe other proteins as well,” Zhan said. “The most surprising discovery is that there is clear difference in protein ordering between virulent and avirulent effectors: all 31 avirulent effectors are ordered proteins with defined structure while all 27 virulent are disordered proteins.”

Multidisciplinary collaboration is essential for durable disease management and evolutionary genetics should play a central role in developing management practices that can minimize pathogen evolution’s to evolve. For more information, read “The Phytophthora infestans AVR2 Effector Escapes R2 Recognition Through Effector Disordering” in the July issue of MPMI.

###

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/MPMI-07-19-0179-R

Tags: Agricultural Production/EconomicsAgricultureBiochemistryBioinformaticsBiologyFood/Food ScienceGeneticsMicrobiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Amino Acid-Infused Ice Captures Methane in Minutes

Amino Acid-Infused Ice Captures Methane in Minutes

October 2, 2025
blank

Advanced AI Methods Revolutionize Solutions to Complex Physics Equations

October 2, 2025

Innovative PtCu@Zeolite Propane Dehydrogenation Catalyst Developed via Ion Exchange and Displacement Reaction Strategy

October 2, 2025

Nanoreactor Cage Harnesses Visible Light for Ultra-Selective Catalytic Cross-Cycloadditions

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amino Acid-Infused Ice Captures Methane in Minutes

Impact of Alperujo Storage Duration on Final Compost Yields

VISTA Regulation in Tumor Cells Affects NSCLC Immunity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.