• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plant, animal surfaces inspire infection-proof engineered implants

Bioengineer by Bioengineer
April 6, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some natural surfaces, like insect wings, have evolved to develop bactericidal features, which researchers hope to translate into health care materials

IMAGE

Credit: Saurav Goel, Alaitz Zabala

WASHINGTON, April 6, 2021 — Dragonfly wings, lotus leaves, cicada wings — thanks to millennia of evolution, nature has optimized the ways these surfaces and others behave to offer antibacterial functionality.

An international, interdisciplinary team of researchers is trying to find the best way to translate these features to create nature-inspired bactericidal surfaces for use in medical implants. They discuss the surface structures and chemical compositions for an ideal implant material in the journal Applied Physics Reviews, from AIP Publishing.

“Objects in nature have such unique features, like spikes sharper than a bacterium, which give them the power of disturbing and killing a bacterium, making them antibacterial,” said Saurav Goel, an author from London South Bank University. “We can make these features with our ultraprecision engineering instruments.”

Despite many studies on the mechanisms by which natural surfaces kill bacteria — whether it is due to chemical reactions, the roughness of the surface, the ability of bacteria to rest on the surface, or something else — commercial exploitation has been virtually nonexistent. The authors said this is partially due to the lack of suitable manufacturing techniques that can produce these nature-inspired features with controlled accuracy on a large scale, which Goel describes as one of the major puzzles faced by 21st-century applied physics.

Goel and his team are working on developing a new laser-based technique that can modify the surface properties of a material by manufacturing the desired features in a freeform manner, based on 3D computer models they generated. Once the method is fully developed, they plan to create a demonstrative prototype of an implant, which will be tested to monitor its bacterial activity.

“The end goal is a prosthesis that I can implant with clinical evidence that it kills bacteria and reduces the infection rate,” said Oliver Pearce, an author from Milton Keynes University Hospital in Buckinghamshire, England.

Though the percentage of infections caused by implants is quite low, with so many prosthetics in use around the world, the sheer number of infections is large, presenting a huge cost to health care systems. However, the vast majority of these are caused by staphylococci and streptococci, so eradicating their effect would reduce infections by up to 90%. The technology is versatile and would be applicable to prosthetics in all parts of the body.

“It’s simplistic to have an advanced surface that kills bacteria and to say that the infection problem is eradicated,” Pearce said. “It won’t eliminate all infections, but in my mind, it will make the rate significantly lower.”

###

The article “Bactericidal surfaces: An emerging 21st century ultra-precision manufacturing and materials puzzle” is authored by Mikel Larrañaga-Altuna, Alaitz Zabala, Inigo Llavori, Oliver Pearce, Dinh T. Nguyen, Jaume Caro, Holger Mescheder, Jose L. Endrino, Gaurav Goel, Wayne Nishio Ayre, Rajkumar Kottayasamy Seenivasagam, Debendra K. Tripathy, Joe Armstrong, and Saurav Goel. The article will appear in Applied Physics Reviews on April 6, 2021 (DOI: 10.1063/5.0028844). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0028844.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0028844

Tags: BacteriologyBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Nickel-Catalyzed Regioselective Hydrogen Metallation Cyclization of Alkynylcyclobutanones Enables Synthesis of Bicyclo[2.1.1]hexanes

Nickel-Catalyzed Regioselective Hydrogen Metallation Cyclization of Alkynylcyclobutanones Enables Synthesis of Bicyclo[2.1.1]hexanes

November 14, 2025
Scripps Research Scientists Featured on Clarivate’s Prestigious Highly Cited Researchers List

Scripps Research Scientists Featured on Clarivate’s Prestigious Highly Cited Researchers List

November 14, 2025

On Average, Humans Spend 78 Minutes Traveling Daily, Independent of Living Standards

November 13, 2025

Next-Generation Solar and Lighting Powered by ‘Beautiful Energy Sandwich’

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Delirium Causes in Long-Term Care: A Hydra’s Challenge

Assessing Chaplain Role in Advance Care Planning

Impact of Bioinformatics on Microbiome Shotgun Analysis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.