• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plant, animal surfaces inspire infection-proof engineered implants

Bioengineer by Bioengineer
April 6, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some natural surfaces, like insect wings, have evolved to develop bactericidal features, which researchers hope to translate into health care materials

IMAGE

Credit: Saurav Goel, Alaitz Zabala

WASHINGTON, April 6, 2021 — Dragonfly wings, lotus leaves, cicada wings — thanks to millennia of evolution, nature has optimized the ways these surfaces and others behave to offer antibacterial functionality.

An international, interdisciplinary team of researchers is trying to find the best way to translate these features to create nature-inspired bactericidal surfaces for use in medical implants. They discuss the surface structures and chemical compositions for an ideal implant material in the journal Applied Physics Reviews, from AIP Publishing.

“Objects in nature have such unique features, like spikes sharper than a bacterium, which give them the power of disturbing and killing a bacterium, making them antibacterial,” said Saurav Goel, an author from London South Bank University. “We can make these features with our ultraprecision engineering instruments.”

Despite many studies on the mechanisms by which natural surfaces kill bacteria — whether it is due to chemical reactions, the roughness of the surface, the ability of bacteria to rest on the surface, or something else — commercial exploitation has been virtually nonexistent. The authors said this is partially due to the lack of suitable manufacturing techniques that can produce these nature-inspired features with controlled accuracy on a large scale, which Goel describes as one of the major puzzles faced by 21st-century applied physics.

Goel and his team are working on developing a new laser-based technique that can modify the surface properties of a material by manufacturing the desired features in a freeform manner, based on 3D computer models they generated. Once the method is fully developed, they plan to create a demonstrative prototype of an implant, which will be tested to monitor its bacterial activity.

“The end goal is a prosthesis that I can implant with clinical evidence that it kills bacteria and reduces the infection rate,” said Oliver Pearce, an author from Milton Keynes University Hospital in Buckinghamshire, England.

Though the percentage of infections caused by implants is quite low, with so many prosthetics in use around the world, the sheer number of infections is large, presenting a huge cost to health care systems. However, the vast majority of these are caused by staphylococci and streptococci, so eradicating their effect would reduce infections by up to 90%. The technology is versatile and would be applicable to prosthetics in all parts of the body.

“It’s simplistic to have an advanced surface that kills bacteria and to say that the infection problem is eradicated,” Pearce said. “It won’t eliminate all infections, but in my mind, it will make the rate significantly lower.”

###

The article “Bactericidal surfaces: An emerging 21st century ultra-precision manufacturing and materials puzzle” is authored by Mikel LarraƱaga-Altuna, Alaitz Zabala, Inigo Llavori, Oliver Pearce, Dinh T. Nguyen, Jaume Caro, Holger Mescheder, Jose L. Endrino, Gaurav Goel, Wayne Nishio Ayre, Rajkumar Kottayasamy Seenivasagam, Debendra K. Tripathy, Joe Armstrong, and Saurav Goel. The article will appear in Applied Physics Reviews on April 6, 2021 (DOI: 10.1063/5.0028844). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0028844.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0028844

Tags: BacteriologyBiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Spin Alignment Boosts Dimerization in Ammonia Oxidation

August 14, 2025
Scientists Develop First ā€˜Microwave Brain’ on a Chip

Scientists Develop First ā€˜Microwave Brain’ on a Chip

August 14, 2025

WSU Researchers Uncover Biological Mechanism Behind Coho Salmon Die-Offs

August 14, 2025

Fluorenol Photobases Enable Ambient CO2 Capture

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Transparent Sleep Apnea Assessment Unveiled

Cellulose Hydrogel with Nanopores Boosts Moisture Power

Blocking HIF-1 Shields Retinal Cells from Hypoxia

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.