• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, June 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Pick me! Pick me! How genes are selected to create diverse immune cell receptors

Bioengineer by Bioengineer
June 2, 2016
in Immunology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE
Credit: Babraham Institute

Use of a new technique developed at the Babraham Institute has allowed researchers to take an in-depth look at the gene shuffling process that is responsible for our body’s ability to recognise a vast range of foreign agents such as disease-causing microorganisms (pathogens). Failure in this process lies at the heart of a variety of immunodeficiency diseases and is also relevant to the decline in immune function observed with age.

To ensure this diversity, antigen receptors, the cellular receptors that recognise the presence of pathogens, are assembled from gene segments picked from a wider selection. Every antigen reception is made of a V (variable), D (diversity) and J (joining) region but there are several of each of these regions to choose from. In mice for example, there are 4 J genes, 10 D genes and 195 V genes in the immunoglobulin heavy chain antigen receptor. Mix and matching the regions allows our body to create an enormous range of receptors ensuring that our immune surveillance is equipped to recognise and respond to most pathogens.

How the different V, D and J segments are selected has remained a key question for immunology researchers. A technique developed at the Institute allows the usage of V, D and J segments to be identified by utilising high-throughput sequencing. In research just published in Cell Reports, the researchers used the technique, called VDJ-seq, to look particularly at the frequency of use of the 195 V genes in an immune cell type from mice. By using cutting-edge machine learning techniques to integrate this information and the data from genetic and epigenetic analyses, they uncovered the regulatory rules explaining why particular V segments were used or unused.

Dr Daniel Bolland, senior postdoctoral researcher at the Babraham Institute and co-first author on the paper, said: “The selection of the different gene segments to create a receptor is not random. Our research showed that there is a wide range in frequency with which a particular V gene segment is utilised. This points to the involvement of complex regulatory mechanisms and our findings contribute towards establishing what these are and how they influence the selection.” Dr Hashem Koohy, also a postdoctoral researcher at the Babraham Institute and co-first author on the paper, added: “Integrating the frequency of selection of different V segments with information on other factors also playing a role in recombination efficiency allowed us to establish the pattern of features that are associated with active V segment usage.”

Dr Mikhail Spivakov, group leader in the Nuclear Dynamics research programme and co-corresponding author, commented: “This is an exciting example of powerful synergy between experimental and computational approaches.”

Dr Anne Corcoran, research group leader in the Institute’s Nuclear Dynamics programme and co-corresponding author, said: “Understanding the VDJ recombination process is important because it is the first determinant of receptor diversity. Having a precise readout of which V, D and J segments are used advances our understanding of the process of recombination and how this is regulated. These finding have implications for immune disorders and aberrant VDJ recombination in cancer.”

###

This work was supported by the Biotechnology and Biological Sciences Research Council and the Medical Research Council.

Media Contact

Louisa Wood
[email protected]
44-012-234-96230
@babrahaminst

http://www.babraham.ac.uk/

The post Pick me! Pick me! How genes are selected to create diverse immune cell receptors appeared first on Scienmag.

Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    158 shares
    Share 63 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    74 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    68 shares
    Share 27 Tweet 17
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Two frontiers: Illinois experts combine forces to develop novel nanopore sensing platform this news headline for the science magazine post

Rewrite Review of active distribution network reconfiguration: Past progress and future directions this news headline for the science magazine post

Rewrite University of Cincinnati structural biology research published in prestigious PNAS this news headline for the science magazine post

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.