• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physics professor wins $1M in funding for quantum information processing research

Bioengineer by Bioengineer
April 6, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Kamal receives early career awards from NSF, Air Force

IMAGE

Credit: Edwin Aguirre for UMass Lowell

LOWELL, Mass. – UMass Lowell researcher Archana Kamal has won two early career development awards totaling more than $1 million from the U.S. Air Force and the National Science Foundation (NSF) for her research in the emerging field of quantum information processing (QIP) with open quantum systems.

QIP is based on the principles of quantum mechanics, which mathematically describe the behavior and interaction of matter and light on the atomic and subatomic scale.

While today’s digital computers encode data in the form of binary digits, or “bits,” which are a series of zeros and ones, quantum computers convert information into quantum bits, or “qubits.” A qubit, which is the basic unit of quantum information, represents a two-state, or two-level, quantum system, such as the up and down spin of an electron or the horizontal and vertical polarization of a photon.

Scientists worldwide, including Kamal, an assistant professor in UMass Lowell’s Department of Physics and Applied Physics, are developing next-generation quantum computing technologies with processors that can solve large, highly complex problems much faster than existing supercomputers using the best-known algorithms. This is the reason why for more than a decade, tech giants like Google, IBM and Microsoft have been investing heavily in quantum computer hardware research.

The biggest challenge to realizing usable quantum processors is “decoherence,” the loss and erasure of quantum information due to strong interactions between qubits and the uncontrolled, “noisy” environment around them. This is the central issue that Kamal is addressing in her research.

Aside from quantum computing, Kamal’s projects could lead to advances in QIP applications and other innovative technologies, including quantum sensing, quantum communication and quantum cryptography (using quantum mechanical properties to store and transmit data securely).

Kamal was recognized by the Air Force Office of Scientific Research with a Young Investigator Program grant – worth $450,000 over three years – for her work on tunable quantum dissipation, which can be used to develop autonomous, quantum error-correction protocols.

The grant is awarded to faculty researchers who “show exceptional ability and promise” in conducting creative, fundamental research in science and engineering, according to the Air Force.

“My project aims to develop self-correcting qubits using the new field of quantum reservoir engineering; that is, correcting quantum errors by controlling the environment seen by a quantum system instead of controlling the system directly,” said Kamal, who lives in Lowell.

She said this approach turns the table on decoherence by designing environments that preserve “quantumness” instead of destroying it.

“Specifically, the Air Force project will focus on extending this unique approach to large, multi-qubit networks, and realizing scalable error correction,” Kamal said.

Kamal’s five-year NSF CAREER grant totaling more than $557,000 will support her research into the entanglement dynamics of quantum systems in the presence of non-trivial noise.

The CAREER grant is the NSF’s “most prestigious award in support of early-career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the agency.

Kamal’s project will explore how quantum reservoir engineering can be implemented for environments that retain “memory” of the quantum states of the system, or an environment that has a non-trivial quantum dynamic of its own that it can imprint to some degree on the system, causing the quantum system to be controlled in a way which was not possible if it were left alone.

“These aspects of autonomous quantum control are interesting and uncharted territory, both theoretically and experimentally,” said Kamal. “Our ultimate goal is to enable quantum technologies that can form the backbone of future quantum computers, which hold out the promise of offering unprecedented advantages over their classical (non-quantum) counterparts, and to answer fundamental questions in quantum physics in the process.”

###

The awards are the latest recognition for Kamal’s research. In 2018, she was named to MIT Technology Review’s prestigious annual list of Innovators Under 35 as a visionary. In September, Kamal was the co-presenter of a TEDx talk on the next quantum revolution as part of the TEDx “Breaking Barriers” webinar series. The series featured women experts speaking on a range of fields, from social justice and activism to space exploration, science, technology, education, business and medicine.

UMass Lowell is a national research university offering its more than 18,000 students bachelor’s, master’s and doctoral degrees in business, education, engineering, fine arts, health, humanities, sciences and social sciences. UMass Lowell delivers high-quality educational programs and personal attention from leading faculty and staff, all of which prepare graduates to be leaders in their communities and around the globe. http://www.uml.edu

Media Contact
Christine Gillette
[email protected]

Tags: Chemistry/Physics/Materials SciencesGraduate/Postgraduate EducationScience/MathTechnology/Engineering/Computer ScienceTheory/DesignUndergraduate
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.