• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physics breakthrough of the year

Bioengineer by Bioengineer
December 17, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International Team from Eindhoven University of Technology and Friedrich Schiller University Jena is awarded the Breakthrough of the Year 2020 prize by Physics World magazine

IMAGE

Credit: (Photo: Juergen Scheere/University of Jena)

For the development of a light-emitting silicon alloy, researchers from TU Eindhoven, Netherlands and the University of Jena, Germany together with partners from the University of Linz and TU Munich, are today (17 December) being awarded the “Breakthrough of the Year” prize by Physics World magazine. In its paper, published in April 2020, the team, which includes Jens René Suckert and Prof. Silvana Botti of the University of Jena, shows for the first time that silicon alloys are suitable for emitting photons on a significant scale, thus paving the way for silicon lasers that could revolutionise optical data processing. The magazine Physics World has honoured international scientists with the Breakthrough of the Year annually since 2009.

“Our work enables for the first time the production of silicon-based photonic computer chips that can work significantly faster with a strongly reduced energy consumption than previous electronic chips,” says Prof. Silvana Botti, explaining the importance of the development. Such microchips, which communicate with light particles (photons) instead of electrons, need an integrated laser that produces the photons directly on the chip. Until now, however, the semiconductor material silicon has been considered an extremely weak emitter of light. The reason for this is the symmetry of its electronic energy states. In order to emit photons, that is to say light, electrons in the semiconductor have to “jump” from an excited state – the conduction band – into a lower-energy state – the valence band. “However, in the silicon crystal, these two bands are offset from each other in such a way that the electron transfer is difficult,” explains Jens René Suckert, who is one of the lead authors of the award-winning paper. Therefore, this indirect band gap, as it is called, has so far prevented efficient photon emmission from silicon.

In the alloy, silicon changes its crystal structure

To get around this problem, the team was inspired by a 50-year-old theory and modified the crystal structure of silicon in a way that makes the band gap direct. For the first time, the researchers have succeeded in making alloys of silicon and germanium grow into a hexagonal crystal structure instead of its usual cubic lattice, which enhances the probability of obtaining transitions from the conduction band to the valence band. In their paper published in the scientific journal Nature, the researchers were able to show that in this crystal structure, silicon emits light efficiently.

For the research, which was carried out as part of the EU project SiLAS, the Jena physicists provided the calculations of the electronic properties of the silicon-germanium nanowires being studied.

“Sound calculations are crucial in proving that the light emission actually comes from the direct band transition of the alloy and to exclude any other sources,” says Silvana Botti. The Jena team’s calculations were so precise that they also allowed predictions about how efficient the light emission is and in which colour the light is emitted, depending on the germanium content of the alloy.

Theory enables precise predictions for experiments

“The award of the most important breakthrough of the year in physics research is a great confirmation of how important innovations can arise from the combination of theoretical and experimental research,” says a delighted Silvana Botti. As the current paper shows, experimental physics benefits from the calculations provided by theoretical physics. “Together, theory and experiment can lead to real breakthroughs,” adds Botti. The professor of theoretical solid-state physics also hopes that the award will win over students and perhaps motivate one or two to apply for a Master’s or doctoral programme in physics research at the University of Jena. As the current award clearly shows, the university is very well positioned internationally.

###

Media Contact
Silvana Botti
[email protected]

Original Source

https://www.uni-jena.de/en/201217_Breakthrough2020

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesOptics
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

New technique builds super-hard metals from nanoparticles

January 22, 2021
IMAGE

Defects may help scientists understand the exotic physics of topology

January 22, 2021

Highly functional membrane developed for producing freshwater from seawater

January 22, 2021

AI: ensuring that humans remain in the center

January 22, 2021
Next Post
IMAGE

Talking to kids about weight: What the internet says and why researchers are wary

IMAGE

What's up Skip? Kangaroos really can 'talk' to us

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In