• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physics breakthrough of the year

Bioengineer by Bioengineer
December 17, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

International Team from Eindhoven University of Technology and Friedrich Schiller University Jena is awarded the Breakthrough of the Year 2020 prize by Physics World magazine

IMAGE

Credit: (Photo: Juergen Scheere/University of Jena)

For the development of a light-emitting silicon alloy, researchers from TU Eindhoven, Netherlands and the University of Jena, Germany together with partners from the University of Linz and TU Munich, are today (17 December) being awarded the “Breakthrough of the Year” prize by Physics World magazine. In its paper, published in April 2020, the team, which includes Jens René Suckert and Prof. Silvana Botti of the University of Jena, shows for the first time that silicon alloys are suitable for emitting photons on a significant scale, thus paving the way for silicon lasers that could revolutionise optical data processing. The magazine Physics World has honoured international scientists with the Breakthrough of the Year annually since 2009.

“Our work enables for the first time the production of silicon-based photonic computer chips that can work significantly faster with a strongly reduced energy consumption than previous electronic chips,” says Prof. Silvana Botti, explaining the importance of the development. Such microchips, which communicate with light particles (photons) instead of electrons, need an integrated laser that produces the photons directly on the chip. Until now, however, the semiconductor material silicon has been considered an extremely weak emitter of light. The reason for this is the symmetry of its electronic energy states. In order to emit photons, that is to say light, electrons in the semiconductor have to “jump” from an excited state – the conduction band – into a lower-energy state – the valence band. “However, in the silicon crystal, these two bands are offset from each other in such a way that the electron transfer is difficult,” explains Jens René Suckert, who is one of the lead authors of the award-winning paper. Therefore, this indirect band gap, as it is called, has so far prevented efficient photon emmission from silicon.

In the alloy, silicon changes its crystal structure

To get around this problem, the team was inspired by a 50-year-old theory and modified the crystal structure of silicon in a way that makes the band gap direct. For the first time, the researchers have succeeded in making alloys of silicon and germanium grow into a hexagonal crystal structure instead of its usual cubic lattice, which enhances the probability of obtaining transitions from the conduction band to the valence band. In their paper published in the scientific journal Nature, the researchers were able to show that in this crystal structure, silicon emits light efficiently.

For the research, which was carried out as part of the EU project SiLAS, the Jena physicists provided the calculations of the electronic properties of the silicon-germanium nanowires being studied.

“Sound calculations are crucial in proving that the light emission actually comes from the direct band transition of the alloy and to exclude any other sources,” says Silvana Botti. The Jena team’s calculations were so precise that they also allowed predictions about how efficient the light emission is and in which colour the light is emitted, depending on the germanium content of the alloy.

Theory enables precise predictions for experiments

“The award of the most important breakthrough of the year in physics research is a great confirmation of how important innovations can arise from the combination of theoretical and experimental research,” says a delighted Silvana Botti. As the current paper shows, experimental physics benefits from the calculations provided by theoretical physics. “Together, theory and experiment can lead to real breakthroughs,” adds Botti. The professor of theoretical solid-state physics also hopes that the award will win over students and perhaps motivate one or two to apply for a Master’s or doctoral programme in physics research at the University of Jena. As the current award clearly shows, the university is very well positioned internationally.

###

Media Contact
Silvana Botti
[email protected]

Original Source

https://www.uni-jena.de/en/201217_Breakthrough2020

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025
Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Skills for New ICU Nurses in Iran

Acylation Shapes Immunotherapy Success in Liver Cancer

EYA1 Boosts Colorectal Cancer Angiogenesis via HIF-1β Activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.