• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physicists discover new type of spin waves

Bioengineer by Bioengineer
May 13, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This could help create innovative concepts for future IT applications

Current technologies for information transfer and processing are challenged by fundamental physical limits. The more powerful they become, the more energy they need and more heat is released to the environment. Also, there are physical limits on the smallness and efficiency of communication devices. The recent discovery by physicists at Martin Luther University Halle-Wittenberg (MLU) and Lanzhou University in China offers a new route for progress on these issues. In the latest edition of the scientific journal Nature Communications, they describe a novel type of spin waves that can be used to transmit and process information with considerably higher efficiency and lower energy consumption.

Conventional IT applications are based on electric charge currents. “This results inevitably in energy losses heating up the environment” said MLU physicist Professor Jamal Berakdar. The researcher added that more energy is needed and also dissipated to operate more powerful and compact devices. Thus, it is very challenging to maintain the pace of advancement based on charge-current based technology. For their study, the teams led by Professor Berakdar and Professor Chenglong Jia of Lanzhou University examined therefore alternative concepts for data communication and processing.

Their work revolved around something known as magnons. “These are waves that are stimulated in ferromagnets by just a fraction of the energy needed for generating the required charge currents,” explained Berakdar. “Magnons can be used to transmit signals and for logical operations in various components while producing virtually no heat.” In this latest study, the German-Chinese research team describes a type of twisted magnons for which the twist or the winding number is protected against damping. Technically the twist is related to magnon orbital angular momentum and can be controlled in magnitude and orientation by electric voltages. This renders possible a multiplex twist-based signal encoding and transmission across large distances. According to the scientists, the reported results open the way to high density information transmission via magnons. In addition to the energy efficiency, the magnon wavelengths are controllable and short compared to optical waves which itself is advantageous for miniaturization. Magnonic elements can also be integrated in existing technologies.

###

This work is supported by the National Natural Science Foundation of China (Nos. 11474138 and 11834005), the German Research Foundation (No. SFB 762 and SFB TRR 227), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT-16R35).

Media Contact
Tom Leonhardt
[email protected]

Related Journal Article

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=3076
http://dx.doi.org/10.1038/s41467-019-10008-3

Tags: Chemistry/Physics/Materials SciencesComputer ScienceHardwareTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.