• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 22, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Physical activity good for your health, but what’s happening below the surface?

Bioengineer by Bioengineer
December 15, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Michigan Health System

ANN ARBOR, Mich. – The University of Michigan was recently awarded $8.2 million from the National Institutes of Health to investigate the molecular changes that occur during and after physical activity.

U-M is one of several centers throughout the United States to receive a grant from the NIH to participate in the Molecular Transducers of Physical Activity Consortium (MoTrPAC). The 6-year funding will begin this month and will allow U-M to establish the Michigan Chemical Analysis Site within the Consortium.

The Consortium brings together multiple scientific disciplines, including exercise physiology, genomics, epigenetics, proteomics, metabolomics and computational sciences, to work together in a new and holistic way to determine the molecular changes that occur during and after physical activity in an attempt to identify the physiological pathways that lead to improved health and prevention of disease.

Charles Burant, M.D., Ph.D., professor of internal medicine and molecular and integrative physiology, and Jun Li, Ph.D., associate professor of human genetics and computational medicine and bioinformatics, will lead the Michigan effort.

The Michigan research team will work with four other chemical analysis sites to systematically analyze plasma and tissues collected from human participants and animals undergoing physical activity.

Although it is well known that physical activity is beneficial to the human body in many ways, little is known about the molecular mechanisms of exercise that lead to improved health. In past studies of physical activity and exercise, researchers focus on one or only a few outcomes, such as increased muscle mass, or changes in blood pressure or blood lipid levels.

The Consortium was created to assemble a comprehensive map of the proteins, peptides, circulating nucleic acids, lipids, hormones and other molecules that change during acute exercise and following exercising training. These are the signals that are most likely to convey the effects of exercise throughout the body. The Consortium will study up to 3,000 individuals, including analyzing their DNA and studying 25,000 blood samples, 7,500 skeletal muscle biopsies and 7,500 fat biopsies. Additional samples will be analyzed from animal models used to study the effects of exercise. For each sample, researchers will measure thousands of genes and metabolites.

"No single lab can deliver groundbreaking work alone on this scale," Li says. "The scope and systematic approach of the Consortium is really what sets it apart from most studies in the past."

Li will lead the Data Management and Bioinformatics Core and Burant will lead the Administrative and Analysis Cores within the Michigan Chemical Analysis Site.

All of the information gathered in the Consortium will be stored in a publically accessible database that scientists from across the world can use to study the effect of exercise and how it may affect organs and tissues in the human body.

"Discovering the similarities and differences among individuals in their responses to exercise will be important in prescribing the right amount and type of exercise for a person to improve their health," Burant says. "It may also provide some way in which we can mimic the beneficial effects of exercise in those who are not able to exercise enough to obtain health benefits. We're very excited to be able to work in the MoTrPAC Consortium with scientists across the country in what will be a new way for us to answer big scientific questions."

###

Media Contact

Kylie O'Brien
[email protected]
734-764-2220
@UMHealthSystem

http://www.med.umich.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....