• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Physical activity good for your health, but what’s happening below the surface?

Bioengineer by Bioengineer
December 15, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Michigan Health System

ANN ARBOR, Mich. – The University of Michigan was recently awarded $8.2 million from the National Institutes of Health to investigate the molecular changes that occur during and after physical activity.

U-M is one of several centers throughout the United States to receive a grant from the NIH to participate in the Molecular Transducers of Physical Activity Consortium (MoTrPAC). The 6-year funding will begin this month and will allow U-M to establish the Michigan Chemical Analysis Site within the Consortium.

The Consortium brings together multiple scientific disciplines, including exercise physiology, genomics, epigenetics, proteomics, metabolomics and computational sciences, to work together in a new and holistic way to determine the molecular changes that occur during and after physical activity in an attempt to identify the physiological pathways that lead to improved health and prevention of disease.

Charles Burant, M.D., Ph.D., professor of internal medicine and molecular and integrative physiology, and Jun Li, Ph.D., associate professor of human genetics and computational medicine and bioinformatics, will lead the Michigan effort.

The Michigan research team will work with four other chemical analysis sites to systematically analyze plasma and tissues collected from human participants and animals undergoing physical activity.

Although it is well known that physical activity is beneficial to the human body in many ways, little is known about the molecular mechanisms of exercise that lead to improved health. In past studies of physical activity and exercise, researchers focus on one or only a few outcomes, such as increased muscle mass, or changes in blood pressure or blood lipid levels.

The Consortium was created to assemble a comprehensive map of the proteins, peptides, circulating nucleic acids, lipids, hormones and other molecules that change during acute exercise and following exercising training. These are the signals that are most likely to convey the effects of exercise throughout the body. The Consortium will study up to 3,000 individuals, including analyzing their DNA and studying 25,000 blood samples, 7,500 skeletal muscle biopsies and 7,500 fat biopsies. Additional samples will be analyzed from animal models used to study the effects of exercise. For each sample, researchers will measure thousands of genes and metabolites.

"No single lab can deliver groundbreaking work alone on this scale," Li says. "The scope and systematic approach of the Consortium is really what sets it apart from most studies in the past."

Li will lead the Data Management and Bioinformatics Core and Burant will lead the Administrative and Analysis Cores within the Michigan Chemical Analysis Site.

All of the information gathered in the Consortium will be stored in a publically accessible database that scientists from across the world can use to study the effect of exercise and how it may affect organs and tissues in the human body.

"Discovering the similarities and differences among individuals in their responses to exercise will be important in prescribing the right amount and type of exercise for a person to improve their health," Burant says. "It may also provide some way in which we can mimic the beneficial effects of exercise in those who are not able to exercise enough to obtain health benefits. We're very excited to be able to work in the MoTrPAC Consortium with scientists across the country in what will be a new way for us to answer big scientific questions."

###

Media Contact

Kylie O'Brien
[email protected]
734-764-2220
@UMHealthSystem

http://www.med.umich.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

November 5, 2025
blank

Quantum-Boosted Transfer Learning for Underwater Species Classification

November 5, 2025

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

November 5, 2025

Unveiling Europe’s Key Players in Regenerative Agriculture

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.