• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Phase separation of scaffold protein regulates microbial asymmetric cell division

Bioengineer by Bioengineer
December 13, 2022
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By polarizing different cell fate determinants at opposite cell poles, asymmetric cell division (ACD) that produces distinct daughter cells is an evolutionarily conserved mechanism to generate cellular diversity in both eukaryotes and prokaryotes. 

Distinct signaling hubs localized at the opposite cell poles in C. crescentus

Credit: SIAT

By polarizing different cell fate determinants at opposite cell poles, asymmetric cell division (ACD) that produces distinct daughter cells is an evolutionarily conserved mechanism to generate cellular diversity in both eukaryotes and prokaryotes. 

The polarization of the scaffold-signaling hubs at cell poles constitutes the basis of ACD. However, the biomolecular basis and regulatory mechanism of the polar signaling complexes has been largely unclear.

Recently, a research team led by Prof. ZHAO Wei from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences proposed that the polar organelle development scaffold protein PodJ in the new cell pole forms biomolecular condensates with physiological functions via phase separation, which help to establish and regulate the asymmetry of bacterial cells.

The study was published in Nature Communications on Nov. 23.

As a well-established model for studying bacterial ACD, Caulobacter crescentus produces a motile swarmer cell and a sessile stalked cell during each cell cycle. In the pre-division cell stage, the polarization of new-pole signaling proteins by the scaffold PodJ coordinates to modulate the phosphorylation levels of a set of downstream signaling proteins, thus determining the cell fate of C. crescentus.

The researchers found that phase separation played an essential role in the C. crescentus PodJ-signaling hub assembly. PodJ formed biomolecular condensates both in vitro and in vivo. Either the coiled-coil 4–6 region or the intrinsically disordered region in PodJ could mediate PodJ phase separation. In addition, both of the phase separation-related domains were found to be involved in recruiting client signaling proteins, indicating that phase separation of PodJ functionally contributes to forming the PodJ–client complexes.

Moreover, a negative regulation of PodJ phase separation by the old-cell-pole scaffold protein SpmX was observed. SpmX inhibited PodJ condensate formation and promoted PodJ condensate aging in vitro. In living cells, SpmX was found to impede the cell-pole accumulation of PodJ and client recruitment, suggesting it may be involved in the new-to-old cell-pole remodeling.

“The results revealed that phase separation modulates the assembly and dynamics of scaffold-signaling hubs in C. crescentus,” said Prof. ZHAO Wei, corresponding author of the study. “It may serve as a general biophysical approach for assembling scaffold-signaling complexes and regulating ACD. Similar methods could be employed for rational engineering of artificial organelles and other membraneless biocatalytic compartments.”



Journal

Nature Communications

DOI

10.1038/s41467-022-35000-2

Article Title

Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub

Article Publication Date

23-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Flight Bones

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

February 8, 2023
Microtiter plates used in the study

Novel method to design new peptide therapeutics pioneered

February 8, 2023

USC Stem Cell-led studies point the way to broadly effective treatments for ALS

February 7, 2023

Forest management will have a stronger effect than climate change on the supply of ecosystem services

February 7, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In