• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

PFAS-free synthesis of fluorinated pharmaceutical and agrochemical compounds

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
Lab set-up
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chemists at the University of Amsterdam have developed a method to furnish a range of molecules with a trifluoromethyl group attached to a sulphur, nitrogen or oxygen atom. Their procedure, which has just been published in Science, avoids the use of PFAS reagents. It thus provides an environmentally friendly synthesis route for pharmaceutical and agrochemical compounds that rely on the presence of the trifluoromethyl group.

Chemists at the University of Amsterdam have developed a method to furnish a range of molecules with a trifluoromethyl group attached to a sulphur, nitrogen or oxygen atom. Their procedure, which has just been published in Science, avoids the use of PFAS reagents. It thus provides an environmentally friendly synthesis route for pharmaceutical and agrochemical compounds that rely on the presence of the trifluoromethyl group.

The straightforward and effective method was developed at the Flow Chemistry group at the Van ‘t Hoff Institute for Molecular Sciences led by Prof. Timothy Noël, in cooperation with researchers in Italy, Spain and the UK, both from academia and industry. Applying the principles of flow chemistry, where reactions take place in closed systems of small tubes, makes for safe and controlled chemistry. It also offers greater versatility and flexibility over more common procedures using traditional chemical glassware.

Environmentally more friendly
Many pharmaceutical compounds (such as anti-depressants) as well as agrochemical compounds (such as pesticides) benefit from the presence of a trifluoromethyl (-CF3) group. It enhances hydrophobicity and increases metabolic stability, thus improving efficacy and lowering the required dose or concentration.

In addition, the new synthesis protocol enables coupling of the CF3 group through a sulphur (S), nitrogen (N) or oxygen (O) atom. Such fluorinated motifs confer unique features to drug molecules and agrochemicals, impacting their lipophilicity, oxidation resistance, and acid-base properties.

Integrated flow system
The Science paper presents a versatile microfluidic flow module for generating reactive N–, S– and O–CF3 anions. These are prepared in a packed bed flow reactor containing the caesium fluoride salt. Appropriate (S, O or N containing) precursors are then led through this reactor. They are fluorinated with high efficiency due to the high surface area of the salt in the packed bed as well and the improved mixing of the organic intermediates. Importantly, this approach also offers enhanced safety as all formed intermediates are contained within the microfluidic system.

Another important feature of the system is the integration of the anion generating module with a downstream reaction module. There, the N–, S– or O–CF3 anions react with appropriate substrates to achieve pharmaceutical and agrochemical active ingredients as the desired end products.

Implementation in an academic and industrial context
In combination, the anion generator module and the downstream reactor provide a streamlined platform for the derivatization of molecules bearing N–, S– and O–CF3 motifs. This innovative approach is poised to impact the development of new pharmaceutical drugs by enhancing their properties while improving safety and sustainability in their production processes. In their Science paper, the researchers report the combination of various anions with a range of substrates, resulting in multiple fluorinated products with relevance to pharmaceutical and agrochemical syntheses. In many cases the research team was able to report very satisfactory yields. Moreover, the operational parameters (e.g. reaction times) offer a good prospect for actual implementation in an academic as well as an industrial context.



Journal

Science

DOI

10.1126/science.adq2954

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

A unified flow strategy for the preparation and use of trifluoromethyl-heteroatom anions

Article Publication Date

30-Aug-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CoMn2O4-rGO Nanocomposite Enhances Supercapacitor Performance

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Nutrient Sources’ Influence on Gladiolus Growth and Soil Microbes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.