• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Peptide nanoparticles marked for in vitro visualization

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A joint research by Kazan Federal University and Chinese Academy Sciences has been published in Chemical Engineering Journal.

The work was conducted under the auspices of the Russian Foundation for Basic Research and organizations-participants of the BRICS framework program in science, technology and innovation; the grant title is “Nanosized peptide-based biomaterials for photodynamic diagnostics of tumors”.

Project lead, Chief Research Associate of KFU’s Bionanotechnology Lab Rawil Fakhrullin commented on the results, “The development of materials for theranostics (simultaneous early diagnosis and therapy of diseases) is one of the most urgent tasks in modern chemistry and biomedicine. A feature of such materials is the combination of at least two functions: sensory and therapeutic. Various nanoparticles capable of targeted drug delivery into cells and tissues are used as carrier particles in theranostic formulations. The most promising are organic nanoparticles. Peptide nanomaterials are now actively used as drug delivery vehicles. The interest in peptide complexes is stimulated by their biological compatibility and safety, as well as the modification of their properties using various covalently attached ligands.”

Using covalent self-assembly, the team managed to synthesize new functional supramolecular systems based on dipeptides and genipin (a cross-sewing agent derived from plant material). The particles are polymer spheres 200-300 nanometers in diameter.

“The obtained peptide complexes are highly stable, have a low level of auto-fluorescence and can be used for in vitro labeling of cells, for example, to detect migration, including the integration of stem cells into the damaged area and distribution in multicellular clusters,” said Fakhrullin. “The specifics of this work was the use of hyperspectral microscopy for visualization of nanoparticles in human cells and the body of Turbatrix aceti nematodes. We have established that peptide nanoparticles have the ability to efficiently scatter light and can be identified by characteristic spectral curves in visible light. This property of peptide nanoparticles makes possible their visualization without the use of fluorescent labels in living cells and organisms, without lengthy sample preparation and specific coloring.”

He also said that studying the interactions between peptide nanomaterials and cells or organisms is crucial for understanding the biological function and the mechanism of action of peptide materials. This is very important for further clinical practice.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://eng.kpfu.ru/novosti/peptide-nanoparticles-marked-for-in-vitro-visualization/

Related Journal Article

http://dx.doi.org/10.1016/j.cej.2021.130348

Tags: BiologyBiotechnologyNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing LEGU-1 and LGMN Interactions with Proton Pump Inhibitors

Strain-Resistant Metasurface Shields Wearable Electronics Electromagnetically

Continuous CO2 Monitoring in VLBW Infants on HFV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.