• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pepper plant sops up personal care product antibiotic

Bioengineer by Bioengineer
April 11, 2018
in Biology
Reading Time: 2 mins read
3
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It sometimes can be hard to find toothpastes, soaps and other toiletries without antibiotics. Their popularity has caused an increase in environmental levels of antimicrobial substances, such as triclocarban (TCC), which end up in the water and soil used to grow crops. Scientists report in the ACS' Journal of Agricultural and Food Chemistry that TCC and related molecules can end up in food, with potentially negative health effects.

The U.S. Food and Drug Administration recently banned TCC from soaps because of questions about its safety and efficacy. Yet, TCC remains in many other products. It's also found in high concentrations in treated wastewater that is sometimes used to irrigate crops. The impact of TCC on human health remains unclear, but it may act as an endocrine disruptor. One obstacle to better understanding the risks of environmental TCC exposure is uncertainty about how much of it ends up in plants, and how plants metabolize the substance. So, Dawn Reinhold and colleagues undertook a study with jalapeno peppers to address this knowledge gap.

To track the antibiotic's journey from water to pepper, the researchers labeled TCC with radioactive carbon (C14). They grew the pepper plants hydroponically and, after 12 weeks, sampled the C14 content in the roots, stems, leaves and fruit. While the pepper fruit itself had relatively low levels of TCC, it contained a hefty portion of C14 in molecules that started out as TCC but then were converted to other molecules by the plant. According to the researchers, this finding indicated that the plant was metabolizing the antibiotic, and the health impact of these metabolites would need to be taken into account to fully assess the safety of TCC consumption.

###

The authors acknowledge funding the National Institute of Food and Agriculture within the U.S. Department of Agriculture, the National Science Foundation and the Vietnam Education Foundation.

The paper's abstract will be available on April 11 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.jafc.7b06150.

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share13Tweet8Share2ShareShareShare2

Related Posts

Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025
Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

Redefining Healthy Longevity: How Science, Technology, and Investment Are Shaping the Future

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain Area 46: The Hub of Emotion Regulation in Marmosets

New Insights into the Cumulative HBsAg/HBV DNA Ratio in Immune-Tolerant Hepatitis B Patients

Anti-PD-1 Boosts Gastric Cancer with Hepatitis B

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.