• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Penn scientists use CRISPR for first time to correct clotting in newborn and adult mice

Bioengineer by Bioengineer
November 30, 2016
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(PHILADELPHIA) – CRISPR/Cas9, a powerful genome editing tool, is showing promise for efficient correction of disease-causing mutations. For the first time, researchers from the Perelman School of Medicine at the University of Pennsylvania have developed a dual gene therapy approach to deliver key components of a CRISPR/Cas9-mediated gene targeting system to mice to treat hemophilia B. This disorder is also called factor IX deficiency and is caused by a missing or defective clotting protein. Their research will be presented during the 58th Annual American Society of Hematology Meeting and Exposition in San Diego from December 3-6 (Abstract #1174).

Most single-gene diseases, such as hemophilia, are caused by different mutations scattered in a specific gene rather than a single predominant mutation, so the team needed to develop a vector that would be applicable for patients with any mutations. The study is a preclinical proof of concept using a universal CRISPR/Cas9 gene targeting approach that could be applied to majority of the patients with a specific disease, in this case hemophilia B. According to the Centers for Disease Control and Prevention, hemophilia in general occurs in approximately 1 in 5,000 live births and there are about 20,000 people with hemophilia in the United States.

"Basically, we cured the mice," said first author Lili Wang, PhD, a research associate professor in the Penn Gene Therapy Program (GTP). James M Wilson, MD, PhD, a professor of medicine and GTP director, is senior author on the study.

To validate this new approach, the team performed the experiment in a mouse model in which the clotting factor IX was knocked out. They used a two-vector approach, with vector 1 expressing the SaCas9 gene driven by a liver-specific promoter so that the gene-editing machinery homes to the liver, the natural site that produces clotting factor IX. Vector 2 is what makes this study different from previous CRISPR-based-gene-therapy studies in the Penn Gene Therapy Program. Vector 2 contains an RNA sequence that specifically targets a region at the 5-prime end of exon 2 of the mouse factor IX gene and a partial human factor IX cDNA sequence, which gives this approach more potency and accuracy.

The team used adeno-associated viral vectors to deliver these components to the mouse liver cells. The strategy they developed is based on CRISPR-mediated homologous recombination to insert the human cDNA into the factor IX location on the mouse genome.

"The targeted insertion leads to the expression of a chimeric hyperactive factor IX protein under the control of the native mouse factor IX promoter," Wang said.

Injection of the two vectors with increasing doses in newborn and adult knockout mice showed stable Factor IX activity at or above the normal levels over four months. Eight weeks after the vector treatment, a subgroup of the newborn and adult treated knockout mice were given a partial liver removal and all of them survived the procedure without any complications or interventions and continued to express factor IX at similar levels.

"This study provides convincing evidence for efficacy in a hemophilia B mouse model following in vivo genome editing by CRISPR/Cas9," Wang said. Yang Yang PhD, a visiting scientist in the Wilson lab, and John White, McMenamin Deirdre, and Peter Bell, PhD, all from Penn, are also coauthors.

###

This research was supported by the Orphan Disease Center at Penn.

For more Penn Medicine news from the 58th Annual American Society of Hematology Meeting, visit: http://www.uphs.upenn.edu/news/News_Releases/2016/11/ash/index.html

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center — which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report — Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

Media Contact

Karen Kreeger
[email protected]
215-349-5658
@PennMedNews

http://www.uphs.upenn.edu/news/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    62 shares
    Share 25 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A new and efficient particle resuspension prediction model based on quasi-static moment equilibrium

Pusan National University researchers develop portable color-changing food spoilage sensor

“Inkable” nanomaterial promises big benefits for bendable electronics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In