• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Penicillium camemberti: a history of domestication on cheese

Bioengineer by Bioengineer
September 24, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Tatiana Giraud, CNRS researcher at the Ecology, Systematics and Evolution Laboratory (CNRS/Université Paris-Saclay/AgroParisTech), CNRS Silver Medal 2015

The white, fluffy layer that covers Camembert is made of a mould resulting from human selection, similar to the way dogs were domesticated from wolves. A collaboration involving French scientists from the CNRS* has shown, through genomic analyses and laboratory experiments, that the mould Penicillium camemberti is the result of a domestication process that took place in several stages. According to their work, a first domestication event resulted in the blue-green mould P. biforme, which is used, for example, for making fresh goat’s cheese. A second, more recent domestication event resulted in the white and fluffy P. camemberti. Both domesticated species show advantageous characteristics for maturing cheese compared to the wild, closely related species: they are whiter and grow faster in cheese-ripening cellar conditions. In addition, they do not produce, or only in very small quantities, a toxin that is potentially dangerous to humans; they also prevent the proliferation of undesirable moulds. This research, published on 24th September in Current Biology, may have an impact on cheese production, by steering the selection of moulds according to the desired characteristics.

###

* The study involved scientists from the Ecology, Systematics and Evolution laboratory (CNRS/Université Paris-Saclay/AgroParisTech) and the Biodiversity and Microbial Ecology laboratory (Université de Brest, Plouzané).

Media Contact
Clara Barrau
[email protected]

Original Source

https://www.cnrs.fr/en/penicillium-camemberti-history-domestication-cheese

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.08.082

Tags: BiologyMicrobiologyMycology
Share14Tweet9Share2ShareShareShare2

Related Posts

MITF Gene Mutation Links to Non-Syndromic Hearing Loss

MITF Gene Mutation Links to Non-Syndromic Hearing Loss

November 27, 2025
Tracking Wild and Vaccine-Derived Poliovirus Spread Patterns

Tracking Wild and Vaccine-Derived Poliovirus Spread Patterns

November 27, 2025

Predicting African Crop Productivity Amid Climate Change

November 27, 2025

Thirty Years of Borrelia Burgdorferi Genome Analysis

November 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MITF Gene Mutation Links to Non-Syndromic Hearing Loss

Advancing Risk-Based Microplastics Management Framework

Primary Sensory Cortex: Adaptive and Flexible Functions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.