• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 18, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Penicillium camemberti: a history of domestication on cheese

Bioengineer by Bioengineer
September 24, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © Tatiana Giraud, CNRS researcher at the Ecology, Systematics and Evolution Laboratory (CNRS/Université Paris-Saclay/AgroParisTech), CNRS Silver Medal 2015

The white, fluffy layer that covers Camembert is made of a mould resulting from human selection, similar to the way dogs were domesticated from wolves. A collaboration involving French scientists from the CNRS* has shown, through genomic analyses and laboratory experiments, that the mould Penicillium camemberti is the result of a domestication process that took place in several stages. According to their work, a first domestication event resulted in the blue-green mould P. biforme, which is used, for example, for making fresh goat’s cheese. A second, more recent domestication event resulted in the white and fluffy P. camemberti. Both domesticated species show advantageous characteristics for maturing cheese compared to the wild, closely related species: they are whiter and grow faster in cheese-ripening cellar conditions. In addition, they do not produce, or only in very small quantities, a toxin that is potentially dangerous to humans; they also prevent the proliferation of undesirable moulds. This research, published on 24th September in Current Biology, may have an impact on cheese production, by steering the selection of moulds according to the desired characteristics.

###

* The study involved scientists from the Ecology, Systematics and Evolution laboratory (CNRS/Université Paris-Saclay/AgroParisTech) and the Biodiversity and Microbial Ecology laboratory (Université de Brest, Plouzané).

Media Contact
Clara Barrau
[email protected]

Original Source

https://www.cnrs.fr/en/penicillium-camemberti-history-domestication-cheese

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.08.082

Tags: BiologyMicrobiologyMycology
Share14Tweet9Share2ShareShareShare2

Related Posts

Streamlined Protocols for Orbivirus Consensus Sequencing

January 18, 2026

Casein-Manganese Ferrite Nanostructures Extract Carotenoids

January 18, 2026

Chick Retina Shows Prolonged Wnt/β-Catenin Activation in Myopia

January 18, 2026

Unveiling Vreelandella Titanicae: A Unique Microbe from Salar de Uyuni

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating OME and HVO-OME Blends in Diesel Engines

Actinomyces Signals Immunotherapy Success in Lung Cancer

Kaempferol Protects HaCaT Cells from UVB Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.