• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Pathways leading to beta cell division identified, may aid diabetes treatment

Bioengineer.org by Bioengineer.org
January 24, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UC San Diego Health

Pancreatic beta cells help maintain normal blood glucose levels by producing the hormone insulin — the master regulator of energy (glucose). Impairment and the loss of beta cells interrupts insulin production, leading to type 1 and 2 diabetes. Using single-cell RNA sequencing, researchers at University of California San Diego School of Medicine have, for the first time, mapped out pathways that regulate beta cell growth that could be exploited to trick them to regenerate.

The findings are published in the May 2 issue of the journal Cell Metabolism.

"If we can find a drug that makes beta cells grow, it could improve blood sugar levels in people with diabetes," said Maike Sander, MD, professor in the Department of Pediatrics and Cellular and Molecular Medicine at UC San Diego School of Medicine. "These people often have residual beta cells but not enough to maintain normal blood glucose levels."

The body generates beta cells in utero and they continue to regenerate after birth, but as people age, cell regeneration diminishes. The predominant way to grow new beta cells is through cell division, but beta cells capable of dividing are rare, compromising less than 1 percent of all beta cells. Scientists have been investigating molecular pathways that govern beta cell growth in hopes of finding new therapies that would help people regain blood glucose control after the onset of diabetes.

In their study, Sander's team identified the pathways that are active when beta cells divide providing insight into possible drug targets. Using single-cell RNA sequencing, the team was able to profile molecular features and metabolic activity of individual beta cells to determine how dividing beta cells differ from non-dividing cells.

"No one has been able to do this analysis because the 1 percent or less of beta cells that are dividing are masked by the 99 percent of beta cells that are not dividing," said Sander. "This in-depth characterization of individual beta cells in different proliferative states was enabled by newer technology. It provides a better picture of what sends beta cells into cell division and clues we can use to try to develop drugs to stimulate certain pathways."

Whether stimulating beta cells to grow will result in therapeutic interventions for diabetes is still to be seen, but this new information opens the door to find out, said Sander.

###

Co-authors include: Chun Zeng, Francesca Mulas, Yinghui Sui, Tiffany Guan, Yuliang Tan, Fenfen Liu, Wen Jin, Andrea C. Carrano, and Gene W. Yeo, UC San Diego; Nathanael Miller, and Orian S. Shirihai, UC Los Angeles; and Mark O. Huising, UC Davis.

Media Contact

Yadira Galindo
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

Related Journal Article

http://dx.doi.org/10.1016/j.cmet.2017.04.014

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Black Soldier Fly Larvae: Innovations in Sustainable Waste Management

November 6, 2025
Targeting FSP1 Induces Ferroptosis in Lung Cancer

Targeting FSP1 Induces Ferroptosis in Lung Cancer

November 6, 2025

Body Fat Levels Crucial for Peak Performance in Professional Soccer Players, Finds Brazilian Study

November 6, 2025

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Black Soldier Fly Larvae: Innovations in Sustainable Waste Management

Targeting FSP1 Induces Ferroptosis in Lung Cancer

Body Fat Levels Crucial for Peak Performance in Professional Soccer Players, Finds Brazilian Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.