• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Paris Agreement target critical for preserving fisheries

Bioengineer by Bioengineer
December 22, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lindsay Lafreniere

Limiting temperature increases to 1.5°C over pre-industrial levels, as outlined in the Paris Agreement, will significantly minimize the impact of global warming on the catch potential of marine ecosystems and limit the turnover of harvested species, a new study reports. The results highlight the urgent need for the global community to adhere to the recommended target of 1.5°C, since hitting temperature increases of 3.5°C could result in an additional three-fold decline in marine biomass for the fishing industry. To better understand how different warming scenarios will impact marine ecosystems, William Cheung and colleagues analyzed data from 19 Earth system models, testing responses to situations where strong mitigation efforts are applied, or high emissions scenarios continue into the future. They applied their model to 892 species of exploited marine fishes and invertebrates. The results estimate that a warming increase of 3.5°C will decrease the maximum catch potential on a global level by 8%, compared to temperature increases of 1.5°C that will decrease maximum catch potential by 2.5%. Some regions will be hit significantly harder under the more dramatic warming condition, however; for example, the maximum catch potential may decrease as much as 47% in the Indo-Pacific region, which includes the Bay of Bengal, Gulf of Thailand, South China Sea, and Sulu-Celebes Sea. Species turnover can also vary depending on global temperatures changes, where, under 3.5°C increase conditions, species turnover is projected to be about 22% of the average species richness observed between 1950 and 1969, compared to 8% if warming is restricted to 1.5°C. The authors also highlight other region-specific projections. They note a few assumptions in their model, but emphasize that these, if anything, mean that their projections are an underestimation. A Perspective by Elizabeth A. Fulton discusses these results in greater detail.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Compact DAC Leveraging Optical Kerr Effect Innovations

November 2, 2025

Assessing Nursing Care Plan Writing: Validity Study

November 2, 2025

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025

Key Factors Influencing Colorectal Cancer Survival

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Compact DAC Leveraging Optical Kerr Effect Innovations

Assessing Nursing Care Plan Writing: Validity Study

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.