• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Paris Agreement target critical for preserving fisheries

Bioengineer by Bioengineer
December 22, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lindsay Lafreniere

Limiting temperature increases to 1.5°C over pre-industrial levels, as outlined in the Paris Agreement, will significantly minimize the impact of global warming on the catch potential of marine ecosystems and limit the turnover of harvested species, a new study reports. The results highlight the urgent need for the global community to adhere to the recommended target of 1.5°C, since hitting temperature increases of 3.5°C could result in an additional three-fold decline in marine biomass for the fishing industry. To better understand how different warming scenarios will impact marine ecosystems, William Cheung and colleagues analyzed data from 19 Earth system models, testing responses to situations where strong mitigation efforts are applied, or high emissions scenarios continue into the future. They applied their model to 892 species of exploited marine fishes and invertebrates. The results estimate that a warming increase of 3.5°C will decrease the maximum catch potential on a global level by 8%, compared to temperature increases of 1.5°C that will decrease maximum catch potential by 2.5%. Some regions will be hit significantly harder under the more dramatic warming condition, however; for example, the maximum catch potential may decrease as much as 47% in the Indo-Pacific region, which includes the Bay of Bengal, Gulf of Thailand, South China Sea, and Sulu-Celebes Sea. Species turnover can also vary depending on global temperatures changes, where, under 3.5°C increase conditions, species turnover is projected to be about 22% of the average species richness observed between 1950 and 1969, compared to 8% if warming is restricted to 1.5°C. The authors also highlight other region-specific projections. They note a few assumptions in their model, but emphasize that these, if anything, mean that their projections are an underestimation. A Perspective by Elizabeth A. Fulton discusses these results in greater detail.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Nasal Staph Affects Mice Mood by Hormone Breakdown

Nasal Staph Affects Mice Mood by Hormone Breakdown

September 22, 2025
Harmonic Generation in Topological Van der Waals Metamaterials

Harmonic Generation in Topological Van der Waals Metamaterials

September 22, 2025

Slc7a7 Enables Macrophage Glutaminolysis to Combat Atherosclerosis

September 22, 2025

Scientists’ Mental Models Reveal Microplastics Insights

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nasal Staph Affects Mice Mood by Hormone Breakdown

Harmonic Generation in Topological Van der Waals Metamaterials

Slc7a7 Enables Macrophage Glutaminolysis to Combat Atherosclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.