• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Parboiling method reduces inorganic arsenic in rice

Bioengineer by Bioengineer
April 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Contamination of rice with arsenic is a major problem in some regions of the world with high rice consumption. Now, researchers reporting in the ACS journal Environmental Science & Technology have found a way to reduce inorganic arsenic in rice by modifying processing methods at traditional, small-scale parboiling plants in Bangladesh. The new method has the added benefit of increasing the calcium content of rice, the researchers say.

People in Bangladesh eat about a pound of rice per person per day, according to statistics from the International Rice Research Institute. This consumption is among the highest in the world, placing Bangladeshis at risk for elevated exposure to inorganic arsenic, a toxic substance and carcinogen that can enter rice from the soil of flooded paddies. After harvest, most rice in the country is parboiled, a process that involves soaking the rough rice (with husk intact) in water and then boiling it, followed by other steps to produce polished white rice. Andrew Meharg from the Institute for Global Food Security, Queen’s University Belfast, and colleagues wondered if parboiling wholegrain rice (with the husk removed) would reduce the levels of different forms of arsenic compared with parboiling rough rice. That’s because the husk can have high levels of inorganic arsenic, and it could also act as a barrier, preventing arsenic species from leaving the rest of the grain during parboiling.

The researchers tested their new processing method in 13 traditional, small-scale parboiling plants throughout Bangladesh. The team used ion chromatography interfaced with inductively coupled plasma-mass spectrometry to analyze arsenic species in rice. They found that in untreated rough rice, inorganic arsenic is highly elevated in the bran compared with the husk. Parboiling wholegrain rice instead of parboiling rough rice reduced levels of inorganic arsenic by about 25 percent in the final polished grain, while increasing calcium by 213 percent. However, the new method reduced potassium by 40 percent. The researchers say that the potassium loss must be balanced with the advantages of reduced arsenic and increased calcium.

###

The authors acknowledge funding from the Nestlé Foundation.

The paper’s abstract will be available on April 17 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.8b06548

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Agricultural Production/EconomicsAgricultureChemistry/Physics/Materials SciencesFood/Food ScienceNutrition/NutrientsPlant SciencesPollution/Remediation
Share15Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.