• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Parasitology: Mother cells as organelle donors

Bioengineer by Bioengineer
September 14, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Source: Dr. Javier Periz, University of Glasgow.

Toxoplasma gondii, the unicellular causative agent of toxoplasmosis, reproduces itself in an unusual fashion by means of an internal budding process. This entails the development of two daughter cells within the cytoplasm of the mother cell. On completion of this process, the mother cell undergoes lysis, and the daughter cells are released into the infected host cell. The daughter cells continue to proliferate until the host-cell itself finally bursts. T. gondii is a globally distributed infectious agent. As a rule, the infection is innocuous. However, during pregnancy, transmission of the parasite to the fetus can severely damage the development of the latter. A group of researchers led by Markus Meissner, Professor of Experimental Parasitology at LMU in collaboration with Dr. Javier Periz at Glasgow University, has now described a phenomenon which plays an important role in asexual reproduction – during internal budding, components of a specific organelle are donated by the mother cell to the daughters. The study appears in the online journal Nature Communications.

In order to recognize, adhere to and infect host cells, T. gondii makes use of organelles called rhoptries and micronemes, which secrete a set of specialized proteins that enable the parasite to invade the target cell. Once the infection has been successfully established, the parasite divides. It had been assumed up to now that the micronemes in the daughter cells are reformed from scratch. However, by specifically labelling one of the micronemal proteins, the authors of the new study were able to follow the fate of the microneme during the cell cycle with the aid of high-resolution microscopy. The observations revealed that the components of the mother cell’s microneme are divided more or less equally between the daughter cells. In addition, micronemal proteins are newly synthesized in the daughter cell. The researchers assume that this recycling is not limited to the micronemes, but serves as a more general mechanism to enable the reassembly of organelles that are vital for propagation of the parasite.

“Furthermore, we have shown that recycled micronemes are transported from mother to daughter by the actin filaments of the cytoskeleton,” says Markus Meissner. “This is an entirely new function for actin in the parasite. Up to now, actin was thought to be involved solely in cell motility in T. gondii. When we have a better understanding of how this newly discovered function of actin is regulated, we may also be able to identify novel drug targets. This is a very interesting prospect because T. gondii is known to possess very few actin-regulating proteins.”

###

Nature Communications 2019

Media Contact
Dr. Kathrin Bilgeri
[email protected]

Original Source

https://www.en.uni-muenchen.de/news/newsarchiv/2019/meissner_micronemes.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12136-2

Tags: BiochemistryChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Cash Transfers Enhance Health Outcomes in Low- and Middle-Income Countries

November 11, 2025

O-GlcNAcylation of SPOP Controls Cancer and Ferroptosis

November 11, 2025

O-GlcNAcylation of SPOP Controls Cancer and Ferroptosis

November 11, 2025

Double the Chance to Win Cash Boosted Medication Use but Achieved Similar Blood Pressure Reduction

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diastolic Function in Newborns: Key Insights Explained

Eco-Friendly Nanoparticles Enhance the Anticancer and Antiviral Efficacy of Cidofovir

Cash Transfers Enhance Health Outcomes in Low- and Middle-Income Countries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.