• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Parasites from patients with cerebral malaria stick preferentially in their brains

Bioengineer by Bioengineer
January 11, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team at LSTM with their collaborators in Malawi and Denmark have provided, for the first time, evidence which links the ability of red blood cells infected with the malaria parasite to bind to the cells lining the blood vessels of the brain, with the clinical syndrome cerebral malaria.

Cerebral malaria is a life-threatening complication of infection with the parasite Plasmodium falciparum. This complication is characterised by the parasite infected red blood cells accumulating in the brain and occurs in 1-2% of the over 200 million reported cases of malaria.

First author on the paper, published recently in the journal EMBO Molecular Medicine, Dr Janet Storm, explained: “Very little is known about why this serious complication occurs in some children but not others. However, it is understood that infected red blood cells, presenting with a protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) on its surface bind to host cells lining the blood vessels in many organs, including the brain.”

A property of the PfEMP1 protein is its variability, which results in changes in the ability of infected red blood cells to bind to host cells in the brain. This has been suggested as the reason we only see cerebral malaria in some infected individuals, and if the infected red blood cells do not bind in the brain cerebral malaria cannot occur.

In their lab in at MLW in Malawi, the team utilised a flow-based adhesion assays to study the binding of infected red blood cells from children with cerebral or uncomplicated malaria to cells derived from human brain blood vessels. The team also used molecular techniques to study the PfEMP1 expressed by the infected red blood cells.

Results showed that binding of infected red blood cells from patients with cerebral malaria to the brain-derived cells was higher than that seen from patients with uncomplicated malaria. This suggests that in most cases P. falciparum avoids targeting the brain and that cerebral malaria only occurs when red blood cells express a subset of PfEMP1 proteins with particular adhesion phenotypes which allow for efficient binding to the cerebral blood vessels. Knowing that binding in the brain is a key feature of cerebral malaria allows researchers to focus their attention on developing new interventions for severe disease based on the interaction between infected red blood cells and the host cells lining the blood vessels in the brain.

###

Media Contact
Clare Bebb
[email protected]
44-015-170-53135

Related Journal Article

https://www.lstmed.ac.uk/news-events/news/researchers-at-lstm-show-that-parasites-from-patients-with-cerebral-malaria-stick
http://dx.doi.org/10.15252/emmm.201809164

Tags: Cell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025

Woodpeckers Grunt Like Tennis Stars While Drilling, Scientists Discover

November 6, 2025

Estrogen Receptor Protects Hippocampal Neurons from Amyloid β

November 6, 2025

Mitochondrial Genomes Reveal Invasive Scale Insect Evolution

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling μ-Opioid Receptor Signaling Plasticity

Enhancing Nursing Students’ Pressure Injury Assessment Skills

Recombination and Transposons Influence Chironomus riparius Diversity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.