• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Parasites from patients with cerebral malaria stick preferentially in their brains

Bioengineer by Bioengineer
January 11, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team at LSTM with their collaborators in Malawi and Denmark have provided, for the first time, evidence which links the ability of red blood cells infected with the malaria parasite to bind to the cells lining the blood vessels of the brain, with the clinical syndrome cerebral malaria.

Cerebral malaria is a life-threatening complication of infection with the parasite Plasmodium falciparum. This complication is characterised by the parasite infected red blood cells accumulating in the brain and occurs in 1-2% of the over 200 million reported cases of malaria.

First author on the paper, published recently in the journal EMBO Molecular Medicine, Dr Janet Storm, explained: “Very little is known about why this serious complication occurs in some children but not others. However, it is understood that infected red blood cells, presenting with a protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) on its surface bind to host cells lining the blood vessels in many organs, including the brain.”

A property of the PfEMP1 protein is its variability, which results in changes in the ability of infected red blood cells to bind to host cells in the brain. This has been suggested as the reason we only see cerebral malaria in some infected individuals, and if the infected red blood cells do not bind in the brain cerebral malaria cannot occur.

In their lab in at MLW in Malawi, the team utilised a flow-based adhesion assays to study the binding of infected red blood cells from children with cerebral or uncomplicated malaria to cells derived from human brain blood vessels. The team also used molecular techniques to study the PfEMP1 expressed by the infected red blood cells.

Results showed that binding of infected red blood cells from patients with cerebral malaria to the brain-derived cells was higher than that seen from patients with uncomplicated malaria. This suggests that in most cases P. falciparum avoids targeting the brain and that cerebral malaria only occurs when red blood cells express a subset of PfEMP1 proteins with particular adhesion phenotypes which allow for efficient binding to the cerebral blood vessels. Knowing that binding in the brain is a key feature of cerebral malaria allows researchers to focus their attention on developing new interventions for severe disease based on the interaction between infected red blood cells and the host cells lining the blood vessels in the brain.

###

Media Contact
Clare Bebb
[email protected]
44-015-170-53135

Related Journal Article

https://www.lstmed.ac.uk/news-events/news/researchers-at-lstm-show-that-parasites-from-patients-with-cerebral-malaria-stick
http://dx.doi.org/10.15252/emmm.201809164

Tags: Cell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.