• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pairing ‘glue’ for electrons in iron-based high-temp superconductors studied

Bioengineer by Bioengineer
July 8, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Newly published research from a team of scientists led by the U.S. Department of Energy’s Ames Laboratory sheds more light on the nature of high-temperature iron-based superconductivity.

Current theories suggest that magnetic fluctuations play a very significant role in determining superconducting properties and even act as a “pairing glue” in iron-based superconductors.

“A metal becomes a superconductor when normal electrons form what physicists call Cooper pairs. The interactions responsible for this binding are often referred to as ‘pairing glue.’ Determining the nature of this glue is the key to understanding, optimizing and controlling superconducting materials,” said Ruslan Prozorov, an Ames Laboratory physicist who is an expert in superconductivity and magnetism.

The scientists, from Ames Laboratory, Nanjing University, University of Minnesota, and L’École Polytechnique, focused their attention on high quality single crystal samples of one widely studied family of iron-arsenide high-temperature superconductors. They sought an experimental approach to systematically disrupt the magnetic, electronic and superconducting ordered states; while keeping the magnetic field, temperature, and pressure unchanged.

They chose a not-so-obvious direction– deliberately inducing disorder in the crystal lattice, but in a controlled and quantifiable way. This was performed at the SIRIUS electron accelerator at École Polytechnique. The scientists bombarded their samples with swift electrons moving at ten percent of the speed of light, creating collisions that displaced atoms, and resulting in desired “point-like” defects. The method, adopted at Ames Laboratory in the early stages of iron superconductivity research, is a way to poke or nudge the system and measure its response. “Think about it as another ‘knob’ that we can turn, leaving other important parameters unchanged,” said Prozorov.

In previous and related research published in Nature Communications in 2018, and using a similar approach of probing the system by disorder, the team looked at the coexistence and interplay of superconductivity and charge-density wave (CDW), another quantum order competing with superconductivity. There they found an intricate relationship in which CDW competes for the same electronic states, but also helps superconductivity by softening the phonon modes that play the role of a superconducting glue in that case (an NbSe2 superconductor).

In the present work itinerant magnetism (spin-density wave) also competes with superconductivity for the electronic states, but offers magnetic fluctuations as a glue.

The team found that the added disorder resulted in a substantial suppression of both magnetic order and superconductivity, pointing to a nontrivial role of magnetism in high-temperature superconductivity.

The research is further discussed in the paper, “Interplay between superconductivity and itinerant magnetism in underdoped Ba1-xKxFe2As2 (x = 0.2) probed by the response to controlled point-like disorder,” authored by R. Prozorov, M. Ko?czykowski, M.A. Tanatar, H. H. Wen, R. M. Fernandes, and P. C. Canfield; and published in Nature Quantum Materials.

###

The electronic irradiation was performed at the SIRIUS pelletron accelerator at Laboratoire des Solides Irradiés, L’École Polytechnique, Palaiseau, France.

Ames Laboratory is a U.S. Department of Energy Office of Science National Laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Ames Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.

Media Contact
Kerry Gibson
[email protected]

Related Journal Article

https://www.ameslab.gov/news/news-releases/what-the-pairing-%E2%80%9Cglue%E2%80%9D-electrons-in-iron-based-high-temperature-superconductors
http://dx.doi.org/10.1038/s41535-019-0171-2

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

Creating Something from Nothing: Physicists Simulate Vacuum Tunneling in a Two-Dimensional Superfluid

September 1, 2025

Chain Recognition Advances Head–Tail Carboboration of Alkenes

September 1, 2025

Solar Orbiter Tracks Ultrafast Electrons Back to the Sun

September 1, 2025

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Clonal Fidelity in Pterocarpus Marsupium Plantlets

MRI Radiomics and Tumor Microenvironment in Cervical Cancer

Evaluating Acupuncture Guidelines for Chronic Pain Relief

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.