• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Overgrowth of gut yeast in newborns may increase asthma risk

Bioengineer by Bioengineer
April 20, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Trans-kingdom imbalances in the gut microbes of newborns may increase the risk of asthma later in life, providing a possible target for treating the condition

IMAGE

Credit: Rozlyn Boutin (CC BY 4.0)

An overgrowth of yeast in the gut within the first few months of life may cause changes to the immune system that increase the risk of asthma later on, shows a study published today in eLife.

Asthma is a common and sometimes difficult-to-manage, life-long lung condition that affects one in 10 children in developed countries. The findings explain a possible cause of asthma and may help scientists develop new strategies to prevent or treat the condition.

The period just after birth is a critical window for the development of a healthy immune system and gut microbiome. Disruptions to gut bacteria that produce anti-inflammatory compounds called short-chain fatty acids (SCFAs) early in life have previously been linked to asthma.

“We recently showed that overgrowth of a type of gut yeast called Pichia kudriavzevii in newborns in Ecuador is associated with an increased risk of asthma,” says first author Rozlyn Boutin, an MD/PhD student in the Department of Microbiology and Immunology at the University of British Columbia, Vancouver, Canada. “In this study, we wanted to see if we could replicate these findings in children from an industrialised setting and identify how fungi of the gut microbiota affect the development of the immune system.”

Boutin and colleagues began with a study of 123 newborns in Canada, who are part of the CHILD Cohort Study. They again found that an overgrowth of Pichia kudriavzevii in the stools of the newborns during the first three months of life was associated with a higher risk of asthma.

To understand how this yeast overgrowth might contribute to asthma later in life, the team applied Pichia kudriavzevii to newborn mice with immature gut microbiota communities. In this mouse model of asthma, the team found that the newborns exposed to the yeast experienced more lung inflammation than those who were unexposed. Applying Pichia kudriavzevii to an adolescent mouse model, however, did not cause this excess inflammation.

“Our findings show that there is a critical window in early life where disruptions in the gut microbiota caused by Pichia kudriavzevii affect the development of the immune system and increase the risk and severity of asthma later in life,” Boutin says.

Previous studies have shown that bacterial SCFAs have beneficial effects on immune development that protect against asthma. In this study, the team also showed that anti-inflammatory SCFAs produced by gut bacteria inhibit the growth of Pichia kudriavzevii.

“Immune responses to gut microbe disruptions early in life have long-term consequences for diseases of the immune system later in life,” concludes senior author Brett Finlay, Professor at the Michael Smith Laboratories and the Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology, University of British Columbia. “Our study adds to our understanding of microbiota-associated asthma and suggests that inhibiting yeast overgrowth with SCFAs in early life could be an effective approach to preventing this condition.”

###

For more information about the Michael Smith Laboratories at the University of British Columbia, visit https://www.msl.ubc.ca.

Media contact

Emily Packer, Media Relations Manager

eLife

[email protected]

+44 (0)1223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We aim to publish work of the highest standards and importance in all areas of biology and medicine, while exploring creative new ways to improve how research is assessed and published. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Immunology and Inflammation research published in eLife, visit https://elifesciences.org/subjects/immunology-inflammation.

And for the latest in Medicine, see https://elifesciences.org/subjects/medicine.

Media Contact
Emily Packer
[email protected]

Original Source

https://elifesciences.org/for-the-press/02986e0f/overgrowth-of-gut-yeast-in-newborns-may-increase-asthma-risk

Related Journal Article

http://dx.doi.org/10.7554/eLife.67740

Tags: BiologyImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

DOD Awards Research Grant to MMRI Scientist Developing Advanced Monitoring Techniques for Transplant Health in Wounded Veterans

August 26, 2025

Boosting Nursing Education: Digital Literacy and Metaverse

August 26, 2025

Outcomes and Resistance in Low-Risk GTN: 270 Cases

August 26, 2025

Innovative Biomedical Sensors Enhance Implant Failure Detection

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DOD Awards Research Grant to MMRI Scientist Developing Advanced Monitoring Techniques for Transplant Health in Wounded Veterans

Dihydromyricetin Shields Against Spinal Cord Injury Damage

University of Tennessee Partners on NSF Grants to Enhance Outcomes via AI

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.