• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Our history in the stars

Bioengineer by Bioengineer
May 10, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Matter around a young star helps astronomers explore our stellar history

IMAGE

Credit: © 2019 Rohan Mehra – Division for Strategic Public Relations

Astronomers map the substance aluminum monoxide (AlO) in a cloud around a distant young star — Origin Source I. The finding clarifies some important details about how our solar system, and ultimately we, came to be. The cloud’s limited distribution suggests AlO gas rapidly condenses to solid grains, which hints at what an early stage of our solar evolution looked like.

Professor Shogo Tachibana of the UTokyo Organization for Planetary and Space Science has a passion for space. From small things like meteorites to enormous things like stars and nebulae — huge clouds of gas and dust in space — he is driven to explore our solar system’s origins.

“I have always wondered about the evolution of our solar system, of what must have taken place all those billions of years ago,” he said. “This question leads me to investigate the physics and chemistry of asteroids and meteorites.”

Space rocks of all kinds greatly interest astronomers as these rocks can remain largely unchanged since the time our sun and planets formed from a swirling cloud of gas and dust. They contain records of the conditions at that time — generally considered to be 4.56 billion years ago — and their properties such as composition can tell us about these early conditions.

“On my desk is a small piece of the Allende meteorite, which fell to Earth in 1969. It’s mostly dark but there are some scattered white inclusions (foreign bodies enclosed in the rock), and these are important,” continued Tachibana. “These speckles are calcium and aluminum-rich inclusions (CAIs), which were the first solid objects formed in our solar system.”

Minerals present in CAIs indicate that our young solar system must have been extremely hot. Physical techniques for dating these minerals reveal a fairly specific age for the solar system. However, Tachibana and colleagues wished to expand on the details of this stage of evolution.

“There are no time machines to explore our own past, so we wanted to see a young star that could share traits with our own,” said Tachibana. “With the Atacama Large Millimeter/submillimeter Array (ALMA), we found the emission lines — a chemical fingerprint — for AlO in outflows from the circumstellar disk (gas and dust surrounding a star) of the massive young star candidate Orion Source I. It’s not exactly like our sun, but it’s a good start.”

ALMA was the ideal tool as it offers extremely high resolution and sensitivity to reveal the distribution of AlO around the star. No other instrument can presently make such observations.

“Thanks to ALMA, we discovered the distribution of AlO around a young star for the first time. The distribution of AlO is limited to the hot region of the outflow from the disk. This implies that AlO rapidly condenses as solid grains — similar to CAIs in our solar system,” explained Tachibana. “This data allows us to place tighter constraints on hypotheses that describe our own stellar evolution. But there’s still much work to do.”

The team now plans to explore gas and solid molecules around other stars to gather data useful to further refine solar system models.

###

Journal article

Shogo Tachibana, Takafumi Kamizuka, Tomoya Hirota, Nami Sakai, Yoko Oya, Aki Takigawa, and Satoshi Yamamoto. Spatial distribution of AlO in a high mass protostar candidate Orion Source I. Astrophysical Journal Letters. DOI: 10.3847/2041-8213/ab1653

Funding by MEXT/JSPS KAKENHI: 25108002, 25108005, 17K05398

Related links

UTokyo Organization for Planetary and Space Science – http://utops.s.u-tokyo.ac.jp/en/

Institute of Astronomy – http://www.ioa.s.u-tokyo.ac.jp/

Department of Physics – http://www.phys.s.u-tokyo.ac.jp/en/

Graduate School of Science – https://www.s.u-tokyo.ac.jp/en/index.html

Research Contact

Professor Shogo Tachibana

UTokyo Organization for Planetary and Space Science, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN

Tel: +81-3-5841-4430

Email: [email protected]

Press Contact

Ms. Kristina Awatsu

Office of Communication, Graduate School of Science, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 JAPAN

Tel: +81-3-5841-8737

E-mail: [email protected]

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-3-5841-0876

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Shogo Tachibana
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00043.html

Related Journal Article

http://dx.doi.org/10.3847/2041-8213/ab1653

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesComets/AsteroidsStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.