• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Otago researchers discover new viral strategy to escape detection

Bioengineer by Bioengineer
December 10, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Otago


University of Otago researchers have discovered how viruses that specifically kill bacteria can outwit bacteria by hiding from their defences, findings which are important for the development of new antimicrobials based on viruses and provide a significant advance in biological knowledge.

Lead researcher Professor Peter Fineran explains that the rise in multi-drug resistant bacteria is leading to the development of alternative therapeutics, including viruses that specifically kill bacteria, called bacteriophages, often referred to as “phages”. However, bacteria can become resistant to phages.

Phages are the most abundant biological entities on the planet and are important for global ecosystems, but they can also be used to kill bacterial pathogens. To defend themselves from the phage invasion, bacteria have developed CRISPR-Cas defence systems – immune systems within the bacteria. But the phages have come up with many ways to avoid these bacterial defences.

In the study published today in Nature Microbiology, the team at the University of Otago discovered a widespread method used by phages to hide from bacterial defences. They discovered a “jumbo” phage which, as the name suggests, is very big, with hundreds of genes. This phage is not recognised by CRISPR-Cas defences that would normally cut up the genetic DNA instructions to make many new phages.

PhD student in the Department of Microbiology and Immunology and first author of the study, Lucia Malone says it made the researchers question how this phage escapes recognition.

“We had molecular and genetic evidence for what was happening, but we really needed to see directly inside these tiny bacteria, which if 100 lined up side-by-side would be the width of a human hair,” Ms Malone says.

This was made possible using a new spinning disk confocal microscope for high-resolution imaging of live cells – the only one with this capability in New Zealand – that was recently set up by Dr Laura Gumy, a new group leader at the University of Otago.

“When phages infected the bacteria, we could see their DNA was encased by a physical ‘shield’ and hidden from the CRISPR-Cas defence systems that couldn’t gain access,” Dr Gumy explains.

However, bacteria have another trick up their sleeve. To take over the host, the phages must produce RNA messages that leave this protective compartment. “This is the Achilles heel of these phages and can be destroyed by a special group of CRISPR-Cas defences that recognise RNA messages,” Ms Malone says.

Dr Fineran explains the study broadens the knowledge of intricate phage-host interactions and demonstrates that “jumbo” phages are less susceptible to bacterial defence systems than some other phages.

“From a biological perspective, our results provide exciting new insights into how phages evade bacterial defence systems.

“This is important because the rise of the multi-drug resistant bacteria is an issue of global concern, which has led to a renewed interest in using phages as anti-bacterials and jumbo phages may provide excellent therapeutics.”

###

For further information, contact:

Lucia Malone

PhD student

Department of Microbiology and Immunology

[email protected]

Professor Peter Fineran

[email protected]

(Currently only available via email)

Media Contact
Liane Topham-Kindley
[email protected]
64-212-799-065

Tags: BacteriologyBiologyMedicine/HealthVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Vaccine Targeting Abp2D Shields Against Catheter UTIs

Vaccine Targeting Abp2D Shields Against Catheter UTIs

August 9, 2025
Defective Lipid Droplets Worsen Heart Cell Damage

Defective Lipid Droplets Worsen Heart Cell Damage

August 9, 2025

Emergency Ventilator Tested for Resource-Limited ICUs

August 9, 2025

Research Highlights Underexplored Role of Coaches in Supporting Athlete Mental Health Amid Deselection Concerns

August 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    136 shares
    Share 54 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plant Bioactives Trigger ROS-Driven Cancer Cell Death

Vaccine Targeting Abp2D Shields Against Catheter UTIs

Revolutionizing Energy Storage: Batteries, Capacitors, and Innovations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.