• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Optimizing restoration can deliver an eightfold increase in cost-effectiveness

Bioengineer by Bioengineer
December 18, 2018
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study shows that restoring nature with spatial intelligence can triple its benefits while halving costs

IMAGE

Credit: Strassburg et al 2018


A new study published in Nature Ecology and Evolution presents a novel approach to identify optimal priority areas for restoration, considering multiple criteria such as biodiversity conservation, climate change mitigation and reduction of costs. In a context of multiple local, national and global targets for ecosystem restoration, the study presents a flexible tool capable of increasing restoration cost-effectiveness by up to eight times.

“These restoration targets, if achieved, will bring multiple benefits for people and nature. But we show that using science to help deciding where to restore can multiply benefits and save billions of dollars in costs”, says Bernardo Strassburg, lead author of the study, from the International Institute for Sustainability (IIS) and the Pontifical Catholic University of Rio de Janeiro (PUC-Rio).

The study involved 25 researchers from several countries and was focused in the Brazilian Atlantic Forest, a global Biodiversity Hotspot that has lost approximately 80% of its natural cover. Brazil´s National Plan for Native Vegetation Recovery aims to restore 12 million hectares of natural vegetation, approximately 5 million of which in the Atlantic Forest. The researchers engaged with the Brazilian Ministry for the Environment since the study design, and its results are now going to be used to help defining the priority areas for restoration in the Atlantic Forest biome.

Studies of priority areas setting largely focus on the conservation of existing habitats, when the distribution of species and carbon stocks can be observed in the field. Applying this approach to restoration presented unique challenges, as the distribution of its potential benefits had to be modelled. The research group estimated the original (pre-human disturbance) distribution of 762 endemic species, the potential sequestration of carbon dioxide as the forest would regrow and the costs of restoration, all of it across 1.3 million pixels of one square kilometer each.

If focused on biodiversity conservation, restoration of 4% of the biome could save 30% of its species from extinction; if focused on climate change mitigation, the regrowth of the forest would remove 1.3 billion tonnes of carbon dioxide from the atmosphere. But these solutions that focus on only one of the goals are not very effective for the other goal and are very expensive. The solution that focus on climate change, for instance, would only deliver half of the avoided extinctions that the biodiversity focus solution could bring.

This is where the multicriteria part of the algorithm developed comes in. By searching across 363 different scenarios, the study identifies some that perform very well for both objectives while keeping costs low. One such solution, labelled as the “Compromise” scenario, could deliver 94% of the maximum gains for biodiversity, 79% of those for climate change, while achieving 83% of the maximum reduction in costs possible. When compared with a baseline scenario where no spatial intelligence is applied and restoration is spread throughout the biome in small patches, this compromise solution increase benefits for biodiversity conservation, climate change mitigation and costs reduction by 257%, 105% and 57%, respectively.

“Societies throughout the world have decided to go on this remarkable journey of recovering nature at a truly planetary scale. It is perhaps an unique opportunity, and by applying spatial intelligence to it we can have vast benefits while keeping costs at the low end. It is an approach that shows a practical way of reconciling the interests of nature conservation and agricultural production”, complements Strassburg.

###

About IIS

Founded in 2009, the Institute has provided inputs on these themes to the UN Framework Convention on Climate Change (UNFCCC), the UN Convention on Biological Diversity (CBD) and various national governments. Co-led the development of the Brazilian National Plan for the Recovery of the Native Vegetation and is a member of the International Panel for Biodiversity and Ecosystem Services (IPBES).

Media Contact
Fernanda Gomes
[email protected]
55-213-875-6218

Original Source

http://www.iis-rio.org/en/noticia/116

Related Journal Article

http://dx.doi.org/10.1038/s41559-018-0743-8

Tags: Algorithms/ModelsBiodiversityBiomedical/Environmental/Chemical EngineeringClimate ChangeEarth ScienceEcology/EnvironmentForestryNature
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.