• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Optical clocks started the calibration of the international atomic time

Bioengineer by Bioengineer
March 4, 2019
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: National Institute of Information and Communications Technology

[Abstract]

Optical clocks of the National Institute of Information and Communications Technology (NICT, Japan) and LNE-SYRTE (Systemes de Reference Temps-Espace, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, France) evaluated the latest “one second” tick of the International Atomic Time (TAI) and provided these data to the Bureau International des Poids et Mesures (BIPM) to be referred for adjusting the tick rate of TAI. Primary frequency standards based on the cesium microwave clock transition or a secondary standard based on a rubidium microwave transition have long played a role to calibrate the scale interval of TAI. The capability of optical clocks, which have made rapid progress in the last twenty years, were recently recognized to be valid, and the two laboratories, in Asia and Europe, finally started the evaluation of TAI using their optical lattice clocks. The two calibrations agreed and are consistent with those provided by state-of-the-art microwave standards, demonstrating the compatibility to adopt optical clocks as a reference that BIPM refers to to adjust the tick rate of TAI. This achievement is found in the “Circular T”, a monthly report issued by the BIPM Time department.

[Background]

Coordinated Universal Time (UTC) is a timescale that various systems such as national standard time, information networks, and international financial systems depend on. UTC differs from TAI by an integer number of seconds, which are the cumulated leap seconds. To generate TAI, BIPM collects data of more than 400 atomic clocks operated in public laboratories over the world and computes their weighted mean.

Its splendid reliability is realized by hundreds of clocks, but the accuracy of the ticking rate has been maintained by the calibrations provided by the state-of-the-art frequency standards, of which international working groups of metrologists recognize the capability. BIPM refers to these calibration data to accelerate or decelerate the ticking rate of TAI in order to be consistent with the SI second.

While microwave standards have long been in charge of calibrations, it has been anticipated that optical clocks, which has made rapid progress over the last decade, would also serve to steer TAI.

[Achievements]

Researchers in NICT and LNE-SYRTE operated their strontium optical lattice clocks independently from December 2 to 12 and evaluated the mean frequency of local hydrogen masers (HMs) with reference to the lattice clock. The HMs being linked to TAI by the BIPM, this evaluation thus allowed us to connect the lattice clocks to TAI. This leads to the calibration of the mean TAI scale interval over ten days with respect to the strontium optical lattice clocks.

The two independent evaluations agreed with consistent results of 0.84(71)E-15 and 0.74(74)E-15 at NICT and LNE-SYRTE, respectively. State-of-the-art primary frequency standards in PTB and SYRTE were also being operated during these ten days, and their calibrations were also consistent with the two results, indicating the validity of using optical clocks to provide a reference to steer the tick rate of TAI. After pilot submission of calibrations of TAI by optical clocks at LNE-SYRTE and NICT that were included in the circular T in 2018 after a review process, this is the first time that optical clocks contribute to steering TAI in real time.

The calibrations were also incorporated to compute more accurate timescale TT(BIPM). Once a year, BIPM reviews TAI with reference to the calibration results reported from laboratories and corrects UTC. The correction turns out to be a more accurate timescale called TT(BIPM). The two calibrations provided by NICT and LNE-SYRTE this time also contributed to the computation of TT(BIPM2018), which were published by BIPM on February 1, 2019.

These results will also contribute to the future redefinition of the second. Optical clocks including the lattice clocks at NICT and LNE-SYRTE have already surpassed the state-of-the-art primary frequency standards based on cesium in various aspects. Time and frequency metrologists have initiated a discussion toward the change of the definition of the SI second, which may occur in 2026 in the earliest.

[Future Prospects]

Optical clocks are now operated in various laboratories, and we expect that more laboratories will contribute to the generation of TAI by providing the evaluation results to BIPM. Reliable calibrations by more optical clocks will allow BIPM to foresee a possible maintenance of UTC based on the new optical definition of the second. The various calibration data will also provide information to determine the absolute frequency of the Sr optical clock transition, which may turn out to be the frequency that defines the new SI second.

###

[Publication information]

Circular T 372

BIPM Time department

URL: ftp://ftp2.bipm.org/pub/tai/Circular-T/cirthtm/cirt.372.html

Media Contact
Sachiko Hirota
[email protected]

Original Source

https://www.nict.go.jp/en/press/2019/03/04-1.html

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesGeophysics/GravityOpticsParticle PhysicsResearch/DevelopmentTechnology/Engineering/Computer ScienceTelecommunications
Share13Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    50 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.