• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

One step closer to chronic pain relief

Bioengineer by Bioengineer
June 20, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

While effective drugs against chronic pain are not just around the corner, researchers from Aarhus, Denmark, have identified a protein, sortilin, as a potential target for medicinal drugs; blocking sortilin prevents pain in mice, a new study shows

Sortilin, which is a protein expressed on the surface of nerve cells, plays a crucial role in pain development in laboratory mice – and in all likelihood in humans as well. This is the main conclusion of the study ‘Sortilin gates neurotensin and BDNF signalling to control peripheral neuropathic pain’, which has just been published in the journal Science Advances.

The results are based on a decade of basic research, and even though studies on mice have only been done so far, the study provides hope for the development of a medicine that can help people with pain induced by nerve injury – called neuropathic pain by medical professionals.

This pain may be triggered by an acute injury or a chronic disease such as e.g. diabetes in the pain pathways and is characterised by different sensations including burning, pricking, stinging, tingling, freezing or stabbing in a chronic and disabling way.

The patients have in common that they could fill a shopping basket with pain killers ranging from local anaesthetic ointments to morphine “without ever really getting any good results” as the primary author of the article, Assistant Professor Mette Richner, puts it. She is employed at the Department of Biomedicine and the DANDRITE research centre, both part of Aarhus University, Denmark.

Mette Richner explains that chronic pain is triggered by overactive nerve cells, i.e. nerve cells where the regulation of their activity is not working properly. For this reason, it is necessary to gain knowledge of the changes happening at the molecular level to be able to ‘nudge things into place again’.

“And it’s here, at the molecular level, that we’ve now added a crucial piece to a larger puzzle,” says Mette Richner, who explains that sortilin – and now things get a little convoluted – appears to ‘put the brakes on the brake’ which, at the molecular level, stops the body’s pain development.

“Once nerve damage has occurred, and the nerve cells go into overdrive, molecules are released which start a domino effect that ultimately triggers pain. The domino effect can be inhibited by a particular molecule in the spinal cord called neurotensin, and our studies show that the neurotensin is ‘captured’ by sortilin, so that the brake is itself inhibited,” explains Mette Richner, who began on the project as a PhD student in Professor Anders Nykjaer’s group and subsequently completed it as a postdoc in Associate Professor’s Christian B. Vaegter’s research group. Both are last authors of the study.

The research group’s hope is that the pharmaceutical industry will continue to investigate whether it is possible to block sortilin locally in the spinal cord, so that the neurotensin can move freely and get the brake to function, thereby inhibiting the pain. In connection with this, Christian Vaegter emphasises that there is obviously a way to go from mouse to human being.

“Our research is carried out on mice, but as some of the fundamental mechanisms are quite similar in humans and mice, it still gives an indication of what is happening in people suffering from chronic pain,” says Christian Vaegter.

The idea of studying the complicated pain-related puzzle in relation to the spinal cord arises from a decade’s worth of research into both pain and sortilin. The initial studies revolved around mice that lack the ability to form sortilin and were apparently pain-free despite nerve damage – and of course the studies were done in accordance with methods approved by the Danish Animal Experiments Inspectorate.

The research group could subsequently ascertain that neither did normal mice develop pain after nerve damage when the researchers blocked sortilin – and from here the hunt for the correlation began, before it was ultimately explained by the regulation of the pain inhibiting molecule neurotensin.

Cronic pain in brief

Around eight percent of the population suffer from neuropathic pain, and the number of sufferers is expected to increase in step with longer life expectancy and more lifestyle diseases.

It is triggered by chronic diseases such as e.g. diabetes and multiple sclerosis and affects around one third of people in these two groups of patients. Chronic pain frequently occurs following amputations and is seen in almost seven out of ten patients with brain and spinal cord injuries. Chronic pain also affects seven out of ten patients receiving chemotherapy.

Chronic pain can occur in all parts of the body and is triggered by nerve damage. In principle, the cause could be a bicycle accident (deep wounds, serious blows), sports injuries, amputation, chemotherapy or autoimmune diseases.

Chronic pain is defined by pain which has failed to disappear three months after the wound has healed.

###

Media Contact
Mette Richner
[email protected]
http://dx.doi.org/10.1126/sciadv.aav9946

Tags: Medicine/HealthPain
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling AGC2 Modulators through Advanced Assay Techniques

October 5, 2025

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

October 5, 2025

Psychological Resilience Mediates Care in Nursing Interns

October 5, 2025

Revolutionizing Preterm Infant Care in Resource-Limited Settings

October 5, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling AGC2 Modulators through Advanced Assay Techniques

Exploring Zeolite-Template Chemical Space: A Comprehensive Mapping

Exploring Home-based HPV Self-Sampling Acceptance in Cameroon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.