• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 9, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Oncotarget | CUDC907 promotes apoptosis of NF2 Schwannoma cells

Bioengineer by Bioengineer
July 26, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- July 26, 2022 – A new research paper was published in Oncotarget on July 19, 2022, entitled, “CUDC907, a dual phosphoinositide-3 kinase/histone deacetylase inhibitor, promotes apoptosis of NF2 Schwannoma cells.”

Figure 5

Credit: Huegel et al.

BUFFALO, NY- July 26, 2022 – A new research paper was published in Oncotarget on July 19, 2022, entitled, “CUDC907, a dual phosphoinositide-3 kinase/histone deacetylase inhibitor, promotes apoptosis of NF2 Schwannoma cells.”

Neurofibromatosis Type 2 (NF2) is a rare tumor disorder caused by pathogenic variants of the merlin tumor suppressor encoded by NF2. Patients develop vestibular schwannomas (VS), peripheral schwannomas, meningiomas, and ependymomas. There are no approved drug therapies for NF2. Previous work identified phosphoinositide-3 kinase (PI3K) as a druggable target. 

Researchers Julianne Huegel, Christine T. Dinh, Maria Martinelli, Olena Bracho, Rosa Rosario, Haley Hardin, Michael Estivill, Anthony Griswold, Sakir Gultekin, Xue-Zhong Liu, and Cristina Fernandez-Valle, from the University of Central Florida and the University of Miami Miller School of Medicine, conducted an unbiased chemical compound screen of the Library of Pharmacologically Active Compounds (LOPAC) as a pilot high-throughput screen to identify NF2 schwannoma targets for inhibition.

“Here we screened PI3K pathway inhibitors for efficacy in reducing viability of human schwannoma cells.” 

The lead compound, CUDC907, a dual histone deacetylase (HDAC)/PI3K inhibitor, was further evaluated for its effects on isolated and nerve-grafted schwannoma model cells, and primary VS cells. CUDC907 (3 nM IG50) reduced human merlin deficient Schwann cell (MD-SC) viability and was 5–100 fold selective for MD over WT-SCs. CUDC907 (10 nM) promoted cell cycle arrest and caspase-3/7 activation within 24 hours in human MD-SCs. Western blots confirmed a dose-dependent increase in acetylated lysine and decreases in pAKT and YAP. 

In a 14-day treatment regimen, CUDC907 decreased tumor growth rate by 44%, modulated phospho-target levels, and decreased YAP levels. In five primary VS, CUDC907 decreased viability, induced caspase-3/7 cleavage, and reduced YAP levels. Its efficacy correlated with basal phospho-HDAC2 levels. CUDC907 has cytotoxic activity in NF2 schwannoma models and primary VS cells and is a candidate for clinical trials.

“In summary, we demonstrated that CUDC907 reduced the activity of three major signaling pathways in NF2 schwannomas (HDAC, PI3K, and YAP) and consistently reduced viability and induced apoptosis in several schwannoma cell models and in all five genetically unique primary VS studied. These consistent results offer the possibility that CUDC907 will promote schwannoma regression in patients with diverse NF2 mutations and support clinical evaluation of CUDC907 for NF2-associated schwannomas and potentially other cancers driven by NF2 pathogenic variants [45]. Current use of this drug in clinical trials for other indications reveals clinical interest in multi-modal drugs over monotherapies.”

 

DOI: https://doi.org/10.18632/oncotarget.28254 

Correspondence to: Cristina Fernandez-Valle – Email: [email protected] 

Keywords: fimepinostat, Schwann cell, vestibular schwanomma, merlin, nerve allograft

 

About Oncotarget: Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science.

 

To learn more about Oncotarget, visit Oncotarget.com and connect with us on social media:

  • Twitter – https://twitter.com/Oncotarget 
  • Facebook – https://www.facebook.com/Oncotarget 
  • YouTube – www.youtube.com/c/OncotargetYouTube 
  • Instagram – https://www.instagram.com/oncotargetjrnl/ 
  • LinkedIn – https://www.linkedin.com/company/oncotarget/ 
  • Pinterest – https://www.pinterest.com/oncotarget/ 
  • LabTube – https://www.labtube.tv/channel/MTY5OA
  • SoundCloud – https://soundcloud.com/oncotarget

For media inquiries, please contact: [email protected].

 

Oncotarget Journal Office

6666 East Quaker Str., Suite 1A

Orchard Park, NY 14127

Phone: 1-800-922-0957 (option 2)

 

###



Journal

Oncotarget

DOI

10.18632/oncotarget.28254

Method of Research

Experimental study

Subject of Research

Cells

Article Title

CUDC907, a dual phosphoinositide-3 kinase/histone deacetylase inhibitor, promotes apoptosis of NF2 Schwannoma cells

Article Publication Date

19-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Schematic view of Wnt signaling in heart tissue.

Future medical applications in drug design

August 9, 2022
Image 1

Robot helps reveal how ants pass on knowledge

August 9, 2022

The walk of Japanese children develops differently from children in other countries

August 9, 2022

Aldosterone linked to increased risk of chronic kidney disease progression and end-stage kidney disease

August 9, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

WeaponryVehiclesWeather/StormsUrogenital SystemZoology/Veterinary ScienceVirusVirologyUrbanizationUniversity of WashingtonVaccineVaccinesViolence/Criminals

Recent Posts

  • Sexual dysfunction high among women with lung cancer
  • Vancouver researchers suggest air pollution be included as risk factor for patients with lung cancer and have never smoked
  • Association Between KRAS/STK11/KEAP1 Mutations and Outcomes in POSEIDON: Durvalumab ± Tremelimumab + Chemotherapy in mNSCLC
  • Informed consent forms for lung cancer clinical trials may be a barrier to informed trial participation
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In