• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Oncotarget: Caloric restriction creates a metabolic pattern of chronological aging delay

Bioengineer by Bioengineer
May 17, 2021
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Oncotarget authors propose a model of how the specific remodeling of cellular metabolism by caloric restriction contributes to yeast chronological aging delay.

IMAGE

Credit: Correspondence to – Vladimir I. Titorenko – [email protected]

The cover for issue 7 of Oncotarget features Figure 14, “A hypothetical model of how a specific remodeling of cellular metabolism by CR slows down yeast chronological aging,” published in “Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors” by Mohammad, et al. which reported that caloric restriction and the tor1Δ mutation are robust geroprotectors in yeast and other eukaryotes.

The authors demonstrate that caloric restriction generates a unique metabolic pattern.

Unlike the tor1Δ mutation or lithocholic acid, it slows down the metabolic pathway for sulfur amino acid biosynthesis from aspartate, sulfate and 5-methyltetrahydrofolate.

Consequently, caloric restriction significantly lowers the intracellular concentrations of methionine, S-adenosylmethionine and cysteine.

They also noticed that the low-calorie diet, but not the tor1Δ mutation or lithocholic acid, decreases intracellular ATP, increases the ADP:ATP and AMP:ATP ratios, and rises intracellular ADP during chronological aging. The Oncotarget authors propose a model of how the specific remodeling of cellular metabolism by caloric restriction contributes to yeast chronological aging delay.

The Oncotarget authors propose a model of how the specific remodeling of cellular metabolism by caloric restriction contributes to yeast chronological aging delay.

Dr. Vladimir I. Titorenko from Concordia University said, “A body of evidence indicates that metabolism is an essential contributor to the aging and longevity of eukaryotic organisms across phyla.“

Indeed, healthy aging of the evolutionarily distant eukaryotes coincides with age-related changes in the concentrations of specific metabolites within cells, tissues, organs and biological fluids.

Furthermore, such dietary interventions as caloric restriction, reduced protein intake, a limited supply of single amino acid and alternating cycles of feeding and fasting are robust geroprotectors that specifically rewire cellular and organismal metabolism in various eukaryotic organisms.

Moreover, allelic variants of the genes implicated in diverse metabolic pathways delay aging and extend longevity in eukaryotic organisms across species.

Besides, pharmacological interventions that target distinct aspects of metabolism are potent geroprotectors in diverse eukaryotes; these interventions include metformin, rapamycin, resveratrol, spermidine and others.

It remains unclear if different dietary, genetic and pharmacological anti-aging interventions set up a similar metabolic pattern of aging delay or each of them generates a distinct metabolic profile.

The Titorenko Research Team concluded in their Oncotarget Research Output that:

1. What is the mechanism responsible for ATP decline under CR conditions? They hypothesize that CR might affect the transcription and/or translation of enzymes involved in ATP synthesis and/or degradation in the cytosol, mitochondria or other cellular locations.

Of note, a transcription/translation-based mechanism of suppressing methionine biosynthetic enzymes and transporters underlies the ability of CR to lower intracellular methionine and extend yeast RLS.

2. What are the metabolic changes underlying the extremely efficient longevity extension in yeast culture under CR conditions with LCA? Their findings indicate that LCA applied under CR conditions “overrides” the CR-specific metabolic profile of aging delay.

Sign up for free Altmetric alerts about this article

DOI – https://doi.org/10.18632/oncotarget.27926

Full text – https://www.oncotarget.com/article/27926/text/

Correspondence to – Vladimir I. Titorenko – [email protected]

Keywords –
cellular aging,
geroprotectors,
caloric restriction,
metabolism,
methionine

About Oncotarget

Oncotarget is a bi-weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology.

To learn more about Oncotarget, please visit https://www.oncotarget.com or connect with:

SoundCloud – https://soundcloud.com/oncotarget
Facebook – https://www.facebook.com/Oncotarget/
Twitter – https://twitter.com/oncotarget
LinkedIn – https://www.linkedin.com/company/oncotarget
Pinterest – https://www.pinterest.com/oncotarget/
Reddit – https://www.reddit.com/user/Oncotarget/

Oncotarget is published by Impact Journals, LLC please visit https://www.ImpactJournals.com or connect with @ImpactJrnls

Media Contact
@RyanJamesJessup
[email protected]

Original Source

https://www.oncotarget.com/news/pr/caloric-restriction-creates-a-metabolic-pattern-of-chronological-aging-delay/

Related Journal Article

http://dx.doi.org/10.18632/oncotarget.27926

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Ready for Robot Caregivers? A Cautious “Yes, If…”

Ready for Robot Caregivers? A Cautious “Yes, If…”

November 5, 2025

Transforming Transcriptomes to Proteomes: A Generative Breakthrough

November 5, 2025

Spatial Single-Cell Atlas Uncovers Lung Region Variations

November 5, 2025

Empowering Self-Advocacy in Young Adults with Disabilities

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ready for Robot Caregivers? A Cautious “Yes, If…”

Transforming Transcriptomes to Proteomes: A Generative Breakthrough

DNA Repair Gene Variants Linked to Cuban Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.