• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

On the way to nanotheranostics

Bioengineer by Bioengineer
July 8, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: S. Gerber (EPFL)

Theranostics is an emerging field of medicine whose name is a combination of “therapeutics” and “diagnostics”. The idea behind theranostics is to combine drugs and/or techniques to simultaneously – or sequentially – diagnose and treat medical conditions, and also monitor the response of the patient. This saves time and money, but can also bypass some of the undesirable biological effects that may arise when these strategies are employed separately.

Today, theranostics applications increasingly use nanoparticles that unite diagnostic molecules and drugs into a single agent. The nanoparticles act as carriers for molecular “cargo”, e.g. a drug or a radioisotope to cancer patients undergoing radiotherapy, targeting specific biological pathways in the patient’s body, while avoiding damage to healthy tissues.

Once at their target tissue, the nanoparticles produce diagnostic images and/or deliver their cargo. This is the cutting-edge technology of “nanotheranostics”, which has become a major focus of research – albeit with many limitations to overcome.

Now, the lab of Sandrine Gerber at EPFL, working with physicists at the University of Geneva, have developed a new nanotheranostic system that overcomes several problems with previous approaches. The system uses “harmonic nanoparticles” (HNPs), a family of metal-oxide nanocrystals with exceptional optical properties, in particular their emission in response to excitation from ultraviolet to infrared light, and their high photostability. It was this feature that brought HNPs into nanotheranostics, when scientists were trying to solve some problems with fluorescent probes.

“Most light-activated nanotheranostic systems need high-energy UV light to excite their photoresponsive scaffolds,” says Gerber. “The problem is that this results in poor penetration depth and can damage living cells and tissues, which limits biomedical applications.”

The new system that Gerber’s group developed avoids these problems by using silica-coated bismuth-ferrite HNPs functionalized with light-responsive caged molecular cargos. These systems can be easily activated with near-infrared light (wavelength 790 nanometers) and imaged at longer wavelength for both detection and drug release processes. Both these features render the system medically safe for patients.

Once light-triggered, the HNPs release their cargo – in this case, L-tryptophan, used as a model. The scientists monitored and quantified the release with a technique that combines liquid chromatography and mass spectrometry, covering the imaging-diagnostic part of the nanotheranostic system.

The authors state that “this work is an important step in the development of nanocarrier platforms allowing decoupled imaging in tissue depth and on-demand release of therapeutics.”

###

Other contributors

University of Geneva

Oncotheis

Epithelix

University Savoie Mont-Blanc

Reference

Jérémy Vuilleumier, Geoffrey Gaulier, Raphaël De Matos, Daniel Ortiz, Laure Menin, Gabriel Campargue, Christophe Mas, Samuel Constant, Ronan Le Dantec, Yannick Mugnier, Luigi Bonacina, Sandrine Gerber-Lemaire. Two-photon triggered photorelease of caged compounds from multifunctional harmonic nanoparticles. ACS Applied Materials and Interfaces 05 July 2019. DOI: 10.1021/acsami.9b0795

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsami.9b0795

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesDiagnosticsMaterialsNanotechnology/MicromachinesOpticsPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Scale Assesses Food and Alcohol Disturbance

CAR T-Cell Therapy: The Future of Cancer Eradication

Hot Capsicum Extracts Combat Culex and Musca Larvae

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.